RESUMEN
In tumors, nutrient availability and metabolism are known to be important modulators of growth signaling. However, it remains elusive whether cancer cells that are growing out in the metastatic niche rely on the same nutrients and metabolic pathways to activate growth signaling as cancer cells within the primary tumor. We discovered that breast-cancer-derived lung metastases, but not the corresponding primary breast tumors, use the serine biosynthesis pathway to support mTORC1 growth signaling. Mechanistically, pyruvate uptake through Mct2 supported mTORC1 signaling by fueling serine biosynthesis-derived α-ketoglutarate production in breast-cancer-derived lung metastases. Consequently, expression of the serine biosynthesis enzyme PHGDH was required for sensitivity to the mTORC1 inhibitor rapamycin in breast-cancer-derived lung tumors, but not in primary breast tumors. In summary, we provide in vivo evidence that the metabolic and nutrient requirements to activate growth signaling differ between the lung metastatic niche and the primary breast cancer site.
Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Mamarias Experimentales/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosfoglicerato-Deshidrogenasa/genética , Serina/biosíntesis , Animales , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Sirolimus/farmacologíaRESUMEN
Patients with ER-negative breast cancer have the worst prognosis of all breast cancer subtypes, often experiencing rapid recurrence or progression to metastatic disease shortly after diagnosis. Given that metastasis is the primary cause of mortality in most solid tumors, understanding metastatic biology is crucial for effective intervention. Using a mouse systems genetics approach, we previously identified 12 genes associated with metastatic susceptibility. Here, we extend those studies to identify Resf1, a poorly characterized gene, as a novel metastasis susceptibility gene in ER- breast cancer. Resf1 is a large, unstructured protein with an evolutionarily conserved intron-exon structure, but with poor amino acid conservation. CRISPR or gene trap mouse models crossed to the Polyoma Middle-T antigen genetically engineered mouse model (MMTV-PyMT) demonstrated that reduction of Resf1 resulted in a significant increase in tumor growth, a shortened overall survival time, and increased incidence and number of lung metastases, consistent with patient data. Furthermore, an analysis of matched tail and primary tissues revealed loss of the wildtype copy in tumor tissue, consistent with Resf1 being a tumor suppressor. Mechanistic analysis revealed a potential role of Resf1 in transcriptional control through association with compound G4 quadruplexes in expressed sequences, particularly those associated with ribosomal biogenesis. These results suggest that loss of Resf1 enhances tumor progression in ER- breast cancer through multiple alterations in both transcriptional and translational control.
Asunto(s)
Proteínas Represoras , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , G-Cuádruplex , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
The TGF-ß-regulated Chloride Intracellular Channel 4 (CLIC4) is an essential participant in the formation of breast cancer stroma. Here, we used data available from the TCGA and METABRIC datasets to show that CLIC4 expression was higher in breast cancers from younger women and those with early-stage metastatic disease. Elevated CLIC4 predicted poor outcome in breast cancer patients and was linked to the TGF-ß pathway. However, these associations did not reveal the underlying biological contribution of CLIC4 to breast cancer progression. Constitutive ablation of host Clic4 in two murine metastatic breast cancer models nearly eliminated lung metastases without reducing primary tumor weight, while tumor cells ablated of Clic4 retained metastatic capability in wildtype hosts. Thus, CLIC4 was required for host metastatic competence. Pre- and post-metastatic proteomic analysis identified circulating pro-metastatic soluble factors that differed in tumor-bearing CLIC4-deficient and wildtype hosts. Vascular abnormalities and necrosis increased in primary tumors from CLIC4-deficient hosts. Transcriptional profiles of both primary tumors and pre-metastatic lungs of tumor-bearing CLIC4-deficient hosts were consistent with a microenvironment where inflammatory pathways were elevated. Altogether, CLIC4 expression in human breast cancers may serve as a prognostic biomarker; therapeutic targeting of CLIC4 could reduce primary tumor viability and host metastatic competence.
Asunto(s)
Neoplasias de la Mama , Canales de Cloruro , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Canales de Cloruro/biosíntesis , Canales de Cloruro/genética , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Proteómica , Factor de Crecimiento Transformador beta/metabolismo , Microambiente TumoralRESUMEN
Breast cancer is the second leading cause of cancer-related deaths in the United States, with the majority of these deaths due to metastatic lesions rather than the primary tumor. Thus, a better understanding of the etiology of metastatic disease is crucial for improving survival. Using a haplotype mapping strategy in mouse and shRNA-mediated gene knockdown, we identified Rnaseh2c, a scaffolding protein of the heterotrimeric RNase H2 endoribonuclease complex, as a novel metastasis susceptibility factor. We found that the role of Rnaseh2c in metastatic disease is independent of RNase H2 enzymatic activity, and immunophenotyping and RNA-sequencing analysis revealed engagement of the T cell-mediated adaptive immune response. Furthermore, the cGAS-Sting pathway was not activated in the metastatic cancer cells used in this study, suggesting that the mechanism of immune response in breast cancer is different from the mechanism proposed for Aicardi-Goutières Syndrome, a rare interferonopathy caused by RNase H2 mutation. These results suggest an important novel, non-enzymatic role for RNASEH2C during breast cancer progression and add Rnaseh2c to a panel of genes we have identified that together could determine patients with high risk for metastasis. These results also highlight a potential new target for combination with immunotherapies and may contribute to a better understanding of the etiology of Aicardi-Goutières Syndrome autoimmunity.
Asunto(s)
Inmunidad Adaptativa , Enfermedades Autoinmunes del Sistema Nervioso/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Malformaciones del Sistema Nervioso/genética , Ribonucleasa H/genética , Animales , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/mortalidad , Enfermedades Autoinmunes del Sistema Nervioso/patología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/secundario , Metástasis Linfática , Ratones , Ratones Desnudos , Mutación , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Malformaciones del Sistema Nervioso/inmunología , Malformaciones del Sistema Nervioso/mortalidad , Malformaciones del Sistema Nervioso/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/inmunología , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/inmunología , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de Supervivencia , Linfocitos T/inmunología , Linfocitos T/patologíaRESUMEN
Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies.
RESUMEN
Accumulating evidence supports the role of an aberrant transcriptome as a driver of metastatic potential. Deadenylation is a general regulatory node for post-transcriptional control by microRNAs and other determinants of RNA stability. Previously, we demonstrated that the CCR4-NOT scaffold component Cnot2 is an inherited metastasis susceptibility gene. In this study, using orthotopic metastasis assays and genetically engineered mouse models, we show that one of the enzymatic subunits of the CCR4-NOT complex, Cnot7, is also a metastasis modifying gene. We demonstrate that higher expression of Cnot7 drives tumor cell autonomous metastatic potential, which requires its deadenylase activity. Furthermore, metastasis promotion by CNOT7 is dependent on interaction with CNOT1 and TOB1. CNOT7 ribonucleoprotein-immunoprecipitation (RIP) and integrated transcriptome wide analyses reveal that CNOT7-regulated transcripts are enriched for a tripartite 3'UTR motif bound by RNA-binding proteins known to complex with CNOT7, TOB1, and CNOT1. Collectively, our data support a model of CNOT7, TOB1, CNOT1, and RNA-binding proteins collectively exerting post-transcriptional control on a metastasis suppressive transcriptional program to drive tumor cell metastasis.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Mamarias Animales/genética , Receptores CCR4/genética , Factores de Transcripción/genética , Transcriptoma/genética , Animales , Neoplasias de la Mama/patología , Exorribonucleasas , Femenino , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Animales/patología , Ratones , Metástasis de la Neoplasia , Estabilidad del ARN/genética , Proteínas RepresorasRESUMEN
Metastasis remains the primary cause of patient morbidity and mortality in solid tumors and is due to the action of a large number of tumor-autonomous and non-autonomous factors. Here we report the results of a genome-wide integrated strategy to identify novel metastasis susceptibility candidate genes and molecular pathways in breast cancer metastasis. This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant. Moreover, the analysis identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy. Further explorations implementing this strategy may therefore provide a variety of information for clinical applications in the control and treatment of advanced neoplastic disease.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/genética , Animales , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Neoplasias Mamarias Animales/diagnóstico , Neoplasias Mamarias Animales/patología , Ratones , Ratones Endogámicos NZB , Ratones Transgénicos , Nectinas , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Interferencia de ARN , ARN Interferente Pequeño/genética , Rosiglitazona , Tiazolidinedionas/farmacologíaRESUMEN
Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Metástasis de la Neoplasia/genética , Neoplasias/genética , Proteínas Represoras/genética , Animales , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Ratones , MicroARNs/genética , Metástasis de la Neoplasia/patología , Neoplasias/patología , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genéticaRESUMEN
Metastasis is a complex process utilizing both tumor-cell-autonomous properties and host-derived factors, including cellular immunity. We have previously shown that germline polymorphisms can modify tumor cell metastatic capabilities through cell-autonomous mechanisms. However, how metastasis susceptibility genes interact with the tumor stroma is incompletely understood. Here, we employ a complex genetic screen to identify Cadm1 as a novel modifier of metastasis. We demonstrate that Cadm1 can specifically suppress metastasis without affecting primary tumor growth. Unexpectedly, Cadm1 did not alter tumor-cell-autonomous properties such as proliferation or invasion, but required the host's adaptive immune system to affect metastasis. The metastasis-suppressing effect of Cadm1 was lost in mice lacking T cell-mediated immunity, which was partially phenocopied by depleting CD8(+) T cells in immune-competent mice. Our data show a novel function for Cadm1 in suppressing metastasis by sensitizing tumor cells to immune surveillance mechanisms, and this is the first report of a heritable metastasis susceptibility gene engaging tumor non-autonomous factors.
Asunto(s)
Moléculas de Adhesión Celular/genética , Genes Supresores de Tumor , Inmunidad Celular/genética , Inmunoglobulinas/genética , Metástasis de la Neoplasia/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Inmunoglobulinas/metabolismo , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/inmunología , PronósticoRESUMEN
Metastatic disease is the proximal cause of mortality for most cancers and remains a significant problem for the clinical management of neoplastic disease. Recent advances in global transcriptional analysis have enabled better prediction of individuals likely to progress to metastatic disease. However, minimal overlap between predictive signatures has precluded easy identification of key biological processes contributing to the prometastatic transcriptional state. To overcome this limitation, we have applied network analysis to two independent human breast cancer datasets and three different mouse populations developed for quantitative analysis of metastasis. Analysis of these datasets revealed that the gene membership of the networks is highly conserved within and between species, and that these networks predicted distant metastasis free survival. Furthermore these results suggest that susceptibility to metastatic disease is cell-autonomous in estrogen receptor-positive tumors and associated with the mitotic spindle checkpoint. In contrast, nontumor genetics and pathway activities-associated stromal biology are significant modifiers of the rate of metastatic spread of estrogen receptor-negative tumors. These results suggest that the application of network analysis across species may provide a robust method to identify key biological programs associated with human cancer progression.
Asunto(s)
Susceptibilidad a Enfermedades , Redes Reguladoras de Genes/genética , Metástasis de la Neoplasia/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Bases de Datos Genéticas , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores de Estrógenos/metabolismo , Especificidad de la Especie , Tetraspanina 25/metabolismoRESUMEN
Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT-rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA-mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.
Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Neoplasias Mamarias Animales/genética , Proteínas Represoras/genética , Alelos , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Metástasis de la Neoplasia , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Complejo Correpresor Histona Desacetilasa y Sin3RESUMEN
We previously identified loci in the mouse genome that substantially influence the metastatic efficiency of mammary tumors. Here, we present data supporting the idea that the signal transduction molecule, Sipa1, is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Analysis of candidate genes identified a nonsynonymous amino acid polymorphism in Sipa1 that affects the Sipa1 Rap-GAP function. Spontaneous metastasis assays using cells ectopically expressing Sipa1 or cells with knocked-down Sipa1 expression showed that metastatic capacity was correlated with cellular Sipa1 levels. We examined human expression data and found that they were consistent with the idea that Sipa1 concentration has a role in metastasis. Taken together, these data suggest that the Sipa1 polymorphism is one of the genetic polymorphisms underlying the Mtes1 locus. This report is also the first demonstration, to our knowledge, of a constitutional genetic polymorphism affecting tumor metastasis.
Asunto(s)
Proteínas Activadoras de GTPasa/genética , Metástasis de la Neoplasia/genética , Proteínas Nucleares/genética , Polimorfismo Genético , Proteínas de Unión al GTP rap/genética , Animales , Bioensayo , Células COS , Adhesión Celular/genética , Chlorocebus aethiops , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Ratones , Mutación , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/genética , Activación Transcripcional , Proteínas de Unión al GTP rap/metabolismoRESUMEN
Breast cancer is the most frequently diagnosed cancer worldwide, constituting 15% of cases in 2023. The predominant cause of breast cancer-related mortality is metastasis, and a lack of metastasis-targeted therapies perpetuates dismal outcomes for late-stage patients. By using meiotic genetics to study inherited transcriptional network regulation, we have identified, to the best of our knowledge, a new class of "essential expression-restricted" genes as potential candidates for metastasis-targeted therapeutics. Building upon previous work implicating the CCR4-NOT RNA deadenylase complex in metastasis, we demonstrate that RNA-binding proteins NANOS1, PUM2, and CPSF4 also regulate metastatic potential. Using various models and clinical data, we pinpoint Smarcd1 mRNA as a target of all three RNA-BPs. Strikingly, both high and low expression of Smarcd1 correlate with positive clinical outcomes, while intermediate expression significantly reduces the probability of survival. Applying the theory of "essential genes" from evolution, we identify 50 additional genes that require precise expression levels for metastasis to occur. Specifically, small perturbations in Smarcd1 expression significantly reduce metastasis in mouse models and alter splicing programs relevant to the ER+/HER2-enriched breast cancer. Identification subtype-specific essential expression-restricted metastasis modifiers introduces a novel class of genes that, when therapeutically "nudged" in either direction, may significantly improve late-stage breast cancer patients.
Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Humanos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Femenino , Ratones , Metástasis de la Neoplasia , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
Acetylation of protein and RNA represent a critical event for development and cancer progression. NAT10 is the only known RNA acetylase that catalyzes the N4-actylcytidine (ac4C) modification of RNAs. Here, we show that the loss of NAT10 significantly decreases lung metastasis in allograft and genetically engineered mouse models of breast cancer. NAT10 interacts with a mechanosensitive, metastasis susceptibility protein complex at the nuclear pore. In addition to its canonical role in RNA acetylation, we find that NAT10 interacts with p300 at gene enhancers. NAT10 loss is associated with p300 mislocalization into heterochromatin regions. NAT10 depletion disrupts enhancer organization, leading to alteration of gene transcription necessary for metastatic progression, including reduced myeloid cell-recruiting chemokines that results in a less metastasis-prone tumor microenvironment. Our study uncovers a distinct role of NAT10 in enhancer organization of metastatic tumor cells and suggests its involvement in the tumor-immune crosstalk dictating metastatic outcomes.
RESUMEN
BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is an aggressive malignancy; its mechanisms of development and progression are poorly understood. We used an integrative approach to identify HCC driver genes, defined as genes whose copy numbers associate with gene expression and cancer progression. METHODS: We combined data from high-resolution, array-based comparative genomic hybridization and transcriptome analysis of HCC samples from 76 patients with hepatitis B virus infection with data on patient survival times. Candidate genes were functionally validated using in vitro and in vivo models. RESULTS: Unsupervised analyses of array comparative genomic hybridization data associated loss of chromosome 8p with poor outcome (reduced survival time); somatic copy number alterations correlated with expression of 27.3% of genes analyzed. We associated expression levels of 10 of these genes with patient survival times in 2 independent cohorts (comprising 319 cases of HCC with mixed etiology) and 3 breast cancer cohorts (637 cases). Among the 10-gene signature, a cluster of 6 genes on 8p, (DLC1, CCDC25, ELP3, PROSC, SH2D4A, and SORBS3) were deleted in HCCs from patients with poor outcomes. In vitro and in vivo analyses indicated that the products of PROSC, SH2D4A, and SORBS3 have tumor-suppressive activities, along with the known tumor suppressor gene DLC1. CONCLUSIONS: We used an unbiased approach to identify 10 genes associated with HCC progression. These might be used in assisting diagnosis and to stage tumors based on gene expression patterns.
Asunto(s)
Carcinoma Hepatocelular/genética , Deleción Cromosómica , Cromosomas Humanos Par 8 , Neoplasias Hepáticas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , China , Hibridación Genómica Comparativa , Progresión de la Enfermedad , Femenino , Proteínas Activadoras de GTPasa/genética , Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Histona Acetiltransferasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Estimación de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Persona de Mediana Edad , Minnesota , Análisis Multivariante , Proteínas Musculares , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Pronóstico , Proteínas/genética , Proteínas/metabolismo , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Transfección , Carga Tumoral , Proteínas Supresoras de Tumor/genéticaRESUMEN
Understanding functional interactions between cancer mutations is an attractive strategy for discovering unappreciated cancer pathways and developing new combination therapies to improve personalized treatment. However, distinguishing driver gene pairs from passenger pairs remains challenging. Here, we designed an integrated omics approach to identify driver gene pairs by leveraging genetic interaction analyses of top mutated breast cancer genes and the proteomics interactome data of their encoded proteins. This approach identified that PIK3CA oncogenic gain-of-function (GOF) and CBFB loss-of-function (LOF) mutations cooperate to promote breast tumor progression in both mice and humans. The transcription factor CBFB localized to mitochondria and moonlighted in translating the mitochondrial genome. Mechanistically, CBFB enhanced the binding of mitochondrial mRNAs to TUFM, a mitochondrial translation elongation factor. Independent of mutant PI3K, mitochondrial translation defects caused by CBFB LOF led to multiple metabolic reprogramming events, including defective oxidative phosphorylation, the Warburg effect, and autophagy/mitophagy addiction. Furthermore, autophagy and PI3K inhibitors synergistically killed breast cancer cells and impaired the growth of breast tumors, including patient-derived xenografts carrying CBFB LOF and PIK3CA GOF mutations. Thus, our study offers mechanistic insights into the functional interaction between mutant PI3K and mitochondrial translation dysregulation in breast cancer progression and provides a strong preclinical rationale for combining autophagy and PI3K inhibitors in precision medicine for breast cancer. SIGNIFICANCE: CBFB-regulated mitochondrial translation is a regulatory step in breast cancer metabolism and synergizes with mutant PI3K in breast cancer progression.
Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Subunidad beta del Factor de Unión al Sitio Principal , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/farmacología , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/genéticaRESUMEN
Previous work identified the Rap1 GTPase-activating protein Sipa1 as a germ-line-encoded metastasis modifier. The bromodomain protein Brd4 physically interacts with and modulates the enzymatic activity of Sipa1. In vitro analysis of a highly metastatic mouse mammary tumor cell line ectopically expressing Brd4 demonstrates significant reduction of invasiveness without altering intrinsic growth rate. However, a dramatic reduction of tumor growth and pulmonary metastasis was observed after s.c. implantation into mice, implying that activation of Brd4 may somehow be manipulating response to tumor microenvironment in the in vivo setting. Further in vitro analysis shows that Brd4 modulates extracellular matrix gene expression, a class of genes frequently present in metastasis-predictive gene signatures. Microarray analysis of the mammary tumor cell lines identified a Brd4 activation signature that robustly predicted progression and/or survival in multiple human breast cancer datasets analyzed on different microarray platforms. Intriguingly, the Brd4 signature also almost perfectly matches a molecular classifier of low-grade tumors. Taken together, these data suggest that dysregulation of Brd4-associated pathways may play an important role in breast cancer progression and underlies multiple common prognostic signatures.
Asunto(s)
Neoplasias de la Mama/patología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Bases de Datos Genéticas , Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ganglios Linfáticos/patología , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Estrógenos/metabolismo , Análisis de SupervivenciaRESUMEN
Mechanical signals from the extracellular microenvironment have been implicated in tumor and metastatic progression. Here, we identify nucleoporin NUP210 as a metastasis susceptibility gene for human estrogen receptor positive (ER+) breast cancer and a cellular mechanosensor. Nup210 depletion suppresses lung metastasis in mouse models of breast cancer. Mechanistically, NUP210 interacts with LINC complex protein SUN2 which connects the nucleus to the cytoskeleton. In addition, the NUP210/SUN2 complex interacts with chromatin via the short isoform of BRD4 and histone H3.1/H3.2 at the nuclear periphery. In Nup210 knockout cells, mechanosensitive genes accumulate H3K27me3 heterochromatin modification, mediated by the polycomb repressive complex 2 and differentially reposition within the nucleus. Transcriptional repression in Nup210 knockout cells results in defective mechanotransduction and focal adhesion necessary for their metastatic capacity. Our study provides an important role of nuclear pore protein in cellular mechanosensation and metastasis.
Asunto(s)
Neoplasias de la Mama/patología , Heterocromatina/metabolismo , Mecanotransducción Celular/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Factor de Unión a CCCTC/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Citoesqueleto/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Adhesiones Focales/genética , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Metiltransferasas/metabolismo , Ratones , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/metabolismo , Polimorfismo Genético , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: Clinical studies have linked usage of progestins (synthetic progesterone [P4]) to breast cancer risk. However, little is understood regarding the role of native P4, signaling through the progesterone receptor (PR), in breast tumor formation. Recently, we reported a link between PR and immune signaling pathways, showing that P4/PR can repress type I interferon signaling pathways. Given these findings, we sought to investigate whether P4/PR drive immunomodulation in the mammary gland and promote tumor formation. METHODS: To determine the effect of P4 on immune cell populations in the murine mammary gland, mice were treated with P4 or placebo pellets for 21 days. Immune cell populations in the mammary gland, spleen, and inguinal lymph nodes were subsequently analyzed by flow cytometry. To assess the effect of PR overexpression on mammary gland tumor development as well as immune cell populations in the mammary gland, a transgenic mouse model was used in which PR was overexpressed throughout the entire mouse. Immune cell populations were assessed in the mammary glands, spleens, and inguinal lymph nodes of 6-month-old transgenic and control mice by flow cytometry. Transgenic mice were also monitored for mammary gland tumor development over a 2-year time span. Following development of mammary gland tumors, immune cell populations in the tumors and spleens of transgenic and control mice were analyzed by flow cytometry. RESULTS: We found that mice treated with P4 exhibited changes in the mammary gland indicative of an inhibited immune response compared with placebo-treated mice. Furthermore, transgenic mice with PR overexpression demonstrated decreased numbers of immune cell populations in their mammary glands, lymph nodes, and spleens. On long-term monitoring, we determined that multiparous PR-overexpressing mice developed significantly more mammary gland tumors than control mice. Additionally, tumors from PR-overexpressing mice contained fewer infiltrating immune cells. Finally, RNA sequencing analysis of tumor samples revealed that immune-related gene signatures were lower in tumors from PR-overexpressing mice as compared with control mice. CONCLUSION: Together, these findings offer a novel mechanism of P4-driven mammary gland tumor development and provide rationale in investigating the usage of antiprogestin therapies to promote immune-mediated elimination of mammary gland tumors.
Asunto(s)
Neoplasias de la Mama/inducido químicamente , Transformación Celular Neoplásica/inducido químicamente , Glándulas Mamarias Animales/efectos de los fármacos , Progesterona/administración & dosificación , Receptores de Progesterona/agonistas , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Implantes de Medicamentos , Femenino , Galectina 4/genética , Galectina 4/metabolismo , Inmunidad Innata/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Glándulas Mamarias Animales/inmunología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones Transgénicos , Ovariectomía , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transducción de Señal , Factores de Tiempo , Carga Tumoral/efectos de los fármacosRESUMEN
There is accumulating evidence for a role of germ line variation in breast cancer metastasis. We have recently identified a novel metastasis susceptibility gene, Rrp1b (ribosomal RNA processing 1 homolog B). Overexpression of Rrp1b in a mouse mammary tumor cell line induces a gene expression signature that predicts survival in breast cancer. Here we extend the analysis of RRP1B function by demonstrating that the Rrp1b activation gene expression signature accurately predicted the outcome in three of four publicly available breast carcinoma gene expression data sets. In addition, we provide insights into the mechanism of RRP1B. Tandem affinity purification demonstrated that RRP1B physically interacts with many nucleosome binding factors, including histone H1X, poly(ADP-ribose) polymerase 1, TRIM28 (tripartite motif-containing 28), and CSDA (cold shock domain protein A). Co-immunofluorescence and co-immunoprecipitation confirmed these interactions and also interactions with heterochromatin protein-1alpha and acetyl-histone H4 lysine 5. Finally, we investigated the effects of ectopic expression of an RRP1B allelic variant previously associated with improved survival in breast cancer. Gene expression analyses demonstrate that, compared with ectopic expression of wild type RRP1B in HeLa cells, the variant RRP1B differentially modulates various transcription factors controlled by TRIM28 and CSDA. These data suggest that RRP1B, a tumor progression and metastasis susceptibility candidate gene, is potentially a dynamic modulator of transcription and chromatin structure.