Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Biomater ; 161: 37-49, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898472

RESUMEN

Retinitis pigmentosa (RP) is a group of genetic diseases that results in rod photoreceptor cell degeneration, which subsequently leads to cone photoreceptor cell death, impaired vision and eventual blindness. Rod-derived cone viability factor (RdCVF) is a protein which has two isoforms: a short form (RdCVF) and a long form (RdCVFL) which act on cone photoreceptors in the retina. RdCVFL protects photoreceptors by reducing hyperoxia in the retina; however, sustained delivery of RdCVFL remains challenging. We developed an affinity-controlled release strategy for RdCVFL. An injectable physical blend of hyaluronan and methylcellulose (HAMC) was covalently modified with a peptide binding partner of the Src homology 3 (SH3) domain. This domain was expressed as a fusion protein with RdCVFL, thereby enabling its controlled release from HAMC-binding peptide. Sustained release of RdCVFL was demonstrated for the first time as RdCVFL-SH3 from HAMC-binding peptide for 7 d in vitro. To assess bioactivity, chick retinal dissociates were harvested and treated with the affinity-released recombinant protein from the HAMC-binding peptide vehicle. After 6 d in culture, cone cell viability was greater when cultured with released RdCVFL-SH3 relative to controls. We utilized computational fluid dynamics to model release of RdCVFL-SH3 from our delivery vehicle in the vitreous of the human eye. We demonstrate that our delivery vehicle can prolong the bioavailability of RdCVFL-SH3 in the retina, potentially enhancing its therapeutic effects. Our affinity-based system constitutes a versatile delivery platform for ultimate intraocular injection in the treatment of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: Retinitis pigmentosa (RP) is the leading cause of inherited blindness in the world. Rod-derived cone viability factor (RdCVF), a novel protein paracrine factor, is effective in preclinical models of RP. To extend its therapeutic effects, we developed an affinity-controlled release strategy for the long form of RdCVF, RdCVFL. We expressed RdCVFL as a fusion protein with an Src homology 3 domain (SH3). We then utilized a hydrogel composed of hyaluronan and methylcellulose (HAMC) and modified it with SH3 binding peptides to investigate its release in vitro. Furthermore, we designed a mathematical model of the human eye to investigate delivery of the protein from the delivery vehicle. This work paves the way for future investigation of controlled release RdCVF.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Ácido Hialurónico/metabolismo , Proteínas del Ojo/genética , Degeneración Retiniana/metabolismo , Metilcelulosa
2.
Neurobiol Aging ; 85: 22-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734438

RESUMEN

The cause of midbrain dopaminergic (mDA) neuron loss in sporadic Parkinson's disease (PD) is multifactorial, involving cell autonomous factors, cell-cell interactions, and the effects of environmental toxins. Early loss of neurons in the locus coeruleus (LC), the main source of ascending noradrenergic (NA) projections, is an important feature of PD and other neurodegenerative disorders. We hypothesized that NA afferents provide trophic support for vulnerable mDA neurons. We demonstrate that depriving mDA neurons of NA input increases postnatal apoptosis and decreases cell survival in young adult rodents, with relative sparing of calbindin-positive subpopulations known to be resistant to degeneration in PD. As a mechanism, we propose that the neurotrophin brain-derived neurotrophic factor (BDNF) modulates anterograde survival effects of LC inputs to mDA neurons. We demonstrate that the LC is rich in BDNF mRNA in postnatal and young adult brains. Early postnatal NA denervation reduces both BDNF protein and activation of TrkB receptors in the ventral midbrain. Furthermore, overexpression of BDNF in NA afferents in transgenic mice increases mDA neuronal survival. Finally, increasing NA activity in primary cultures of mDA neurons improves survival, an effect that is additive or synergistic in the presence of different concentrations of BDNF. Taken together, our results point to a novel mechanism whereby LC afferents couple BDNF effects and NA activity to provide anterograde trophic support for vulnerable mDA neurons. Early loss of NA activity and anterograde neurotrophin support may contribute to degeneration of vulnerable neurons in PD and other neurodegenerative disorders.


Asunto(s)
Supervivencia Celular , Neuronas Dopaminérgicas/patología , Mesencéfalo/citología , Norepinefrina/fisiología , Enfermedad de Parkinson/etiología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Ratones Transgénicos , Enfermedad de Parkinson/patología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA