Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Physiol ; 101(1): 245-250, 1993 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12231680

RESUMEN

Winter cultivars of rye (Secale cereale L., cv Musketeer) and wheat (Triticum aestivum L. cvs Kharkov and Monopol), but not a spring cultivar of wheat (Glenlea), grown at cold-hardening temperatures showed, at high irradiances, a higher proportion of oxidized to reduced primary, stable quinone receptor (QA) than did the same cultivars grown under nonhardening conditions. In addition, there was a positive correlation between the effects of low-growth temperature on this increased proportion of oxidized QA, and a concomitant increase in the capacity for photosynthesis, and LT50, the temperature at which 50% of the seedlings are killed, in cultivars showing different freezing tolerances. This suggests that low-temperature modulation of the photosynthetic apparatus may be an important factor during the induction of freezing resistance in cereals. Finally, the control of photosystem II photochemistry by nonphotochemical quenching of excitation energy was identical for nonhardened and cold-hardened winter rye. However, examination of measuring temperature effects per se revealed that, irrespective of growth temperature, nonphotochemical quenching exerted a stronger control on photosystem II photochemistry at 10[deg] C rather than at 20[deg] C.

2.
Plant Physiol ; 106(3): 983-990, 1994 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12232378

RESUMEN

The effect of a short-term (hours) shift to low temperature (5[deg]C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5[deg]C exhibited 25% higher in situ CO2 exchange rates than nonhardened plants grown at 24[deg]C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5[deg]C required 9 h in the light at 5[deg]C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5[deg]C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotective and storage functions that are critical to the performance of these cultivars during over-wintering.

3.
Plant Physiol ; 109(2): 697-706, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12228623

RESUMEN

The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring.

4.
FEBS Lett ; 389(3): 319-23, 1996 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-8766724

RESUMEN

In higher plants non-photochemical dissipation of excess light, trapped by the pigment pool of photosystem II, prevents photodamage to the photosynthetic apparatus. We report here that an algal virus infecting Chlorella strain Pbi induces non-photochemical quenching of photosystem II fluorescence, indicating enhanced loss of absorbed light energy from photosystem II. This phenomenon occurs soon after the establishment of the virus infection cycle and is observed at low irradiance (20 micromol quanta m-2 s-1). At low light, infection associated non-photochemical quenching is not linked to extensive conversion of violaxanthin to antheraxanthin and zeaxanthin. However, such conversion occurs rapidly (2-10 min) in infected cells under conditions of high irradiance (100-300 micromol quanta m-2 s-1). Under similar conditions uninfected Chlorella cells do not display significant changes in non-photochemical quenching.


Asunto(s)
Chlorella/virología , Clorofila/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Phycodnaviridae/fisiología , Xantófilas , beta Caroteno/análogos & derivados , Carotenoides/análogos & derivados , Carotenoides/metabolismo , Chlorella/metabolismo , Cicloheximida/farmacología , Ditiotreitol/farmacología , Compuestos Epoxi/metabolismo , Fluorescencia , Genes Virales , Luz , Complejos de Proteína Captadores de Luz , Luteína/metabolismo , Paraquat/metabolismo , Complejo de Proteína del Fotosistema II , Phycodnaviridae/genética , Pigmentos Biológicos/metabolismo , Zeaxantinas
5.
Plant Physiol ; 96(2): 491-7, 1991 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16668213

RESUMEN

In vivo room temperature chlorophyll a fluorescence coupled with CO(2) and O(2) exchange was measured to determine photosynthetic limitation(s) for spring and winter wheat (Triticum aestivum L.) grown at cold-hardening temperatures (5 degrees C/5 degrees C, day/night). Plants of comparable physiological stage, but grown at nonhardening temperatures (20 degrees C/16 degrees C, day/night) were used in comparison. Winter wheat cultivars grown at 5 degrees C had light-saturated rates of CO(2) exchange and apparent photon yields for CO(2) exchange and O(2) evolution that were equal to or greater than those of winter cultivars grown at 20 degrees C. In contrast, spring wheat cultivars grown at 5 degrees C showed 35% lower apparent photon yields for CO(2) exchange and 25% lower light-saturated rates of CO(2) exchange compared to 20 degrees C grown controls. The lower CO(2) exchange capacity is not associated with a lower efficiency of photosystem II activity measured as either the apparent photon yield for O(2) evolution, the ratio of variable to maximal fluorescence, or the level of reduced primary quinone electron acceptor maintained at steady-state photosynthesis, and is most likely associated with carbon metabolism. The lower CO(2) exchange capacity of the spring cultivars developed following long-term exposure to low temperature and did not occur following over-night exposure of nonhardened plants to 5 degrees C.

6.
Plant Physiol ; 100(3): 1283-90, 1992 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16653118

RESUMEN

Photoinhibition of photosynthesis and its recovery were studied in wheat (Triticum aestivum L.) leaves grown at nonhardening (20 degrees C) and cold-hardening (5 degrees C) temperatures. Cold-hardened wheat leaves were less susceptible to photoinhibition at 5 degrees C than nonhardened leaves, and the winter cultivars, Kharkov and Monopol, were less susceptible than the spring cultivar, Glenlea. The presence of chloramphenicol, a chloroplastic protein synthesis inhibitor, increased the susceptibility to photoinhibition, but cold-hardened leaves still remained less susceptible to photoinhibition than nonhardened leaves. Recovery at 50 mumol m(-2) s(-1) photosynthetic photon flux density and 20 degrees C was at least biphasic, with a fast and a slow phase in all cultivars. Cold-hardened leaves recovered maximum fluorescence and maximum variable fluorescence in the dark-adapted state during the fast phase at a rate of 42% h(-1) compared with 22% h(-1) for nonhardened leaves. The slow phase occurred at similar rates (2% h(-1)) in cold-hardened and nonhardened leaves. Full recovery required up to 30 h. Fast-recovery phase was not reduced by either lowering the recovery temperature to 5 degrees C or by the presence of chloramphenicol. Slow-recovery phase was inhibited by both treatments. Hence, the fast phase of recovery does not require de novo chloroplast protein synthesis. In addition, only approximately 60% of the photochemical efficiency lost through photoinhibition at 5 degrees C was associated with lost [(14)C]atrazine binding and, hence, with damage to the secondary quinone electron acceptor for photosystem II-binding site. We conclude that the decrease in susceptibility to photoinhibition exhibited following cold hardening of winter and spring cultivars is not due to an increased capacity for repair of photoinhibitory damage at 5 degrees C but reflects intrinsic properties of the cold-hardened photosynthetic apparatus. A model to account for the fast component of recovery is discussed.

7.
Aust N Z J Med ; 18(6): 745-52, 1988 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-3266551

RESUMEN

Respiratory symptoms, bronchial hyperresponsiveness (BHR) and atopic status were measured in 1,217 schoolchildren, aged 8 to 12 years, living in the Villawood area of the city of Sydney. The findings are compared to those from studies previously conducted, using identical protocols, in the inland town of Wagga Wagga and in the coastal town in Belmont, NSW. There was a higher prevalence of respiratory symptoms in Villawood and Wagga Wagga (40%) than in Belmont (29%). The prevalence of BHR was 15% in Villawood and Belmont and 20% in Wagga Wagga. However, the distribution of severity of BHR was similar in each study town, reflecting the same pattern of responsiveness. The percentage of children who were atopic was higher in Villawood (44%) than in inland Wagga Wagga (39%) or coastal Belmont (40%). Children in the three areas differed in their reactions to the predominant allergen groups. There were more children who were reactive to grass pollens in the inland area and more children who were reactive to house dust mites in the coastal area. Children in Villawood had a high prevalence of reactivity both to house dust mites and to grass pollens. The Villawood children who were born in Australia had a higher prevalence of respiratory symptoms, of BHR and of atopy than the foreign-born children.


Asunto(s)
Asma/epidemiología , Hipersensibilidad Inmediata/epidemiología , Rinitis Alérgica Estacional/epidemiología , Contaminantes Atmosféricos/efectos adversos , Australia , Niño , Estudios Transversales , Femenino , Humanos , Masculino
8.
Planta ; 188(3): 369-75, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24178327

RESUMEN

The effect of repeated exposure to high light (1200 µmol · m(-2) · s(-1) photosynthetic photon flux density, PPFD) at 5° C was examined in attached leaves of cold-grown spring (cv. Katepwa) and winter (cv. Kharkov) wheat (Triticum aestivum L.) over an eight-week period. Under these conditions, Kharkov winter wheat exhibited a daily reduction of 24% in FV/FM (the ratio of variable to maximal fluorescence in the dark-adapted state), in contrast to 41% for cold-grown Katepwa spring wheat. Both cultivars were able to recover from this daily suppression of FV/FM such that the leaves exhibited an average morning FV/FM of 0.651 ± 0.004. Fluorescence measurements made under steady-state conditions as a function of irradiance from 60 to 2000 µmol · m(-2) · s(-1) indicated that the yield of photosystem II (PSII) electron transport under light-saturating conditions was the same for photoinhibited and control cold-grown plants, regardless of cultivar. Repeated daily exposure to high light at low temperature did not increase resistance to short-term photoinhibition, although zeaxanthin levels increased by three- to fourfold. In addition, both cultivars increased the rate of dry-matter accumulation, relative to control plants maintained at 5° C and 250 µmol · m(-2) · s(-1) PPFD (10% and 28% for Katepwa and Kharkov, respectively), despite exhibiting suppressed fv/fm and reduced photon yields for O2 evolution following daily high-light treatments. Thus, although photosynthetic efficiency is suppressed by a longterm, photoinhibitory treatment, light-saturated rates of photosynthesis are sufficiently high during the high-light treatment to offset any reduction in photochemical efficiency of PSII. We suggest that in these cold-tolerant plants, photoinhibition of PSII may represent a longterm, stable, down-regulation of photochemistry to match the overall photosynthetic demand for ATP and reducing equivalents.

9.
Proc Natl Acad Sci U S A ; 90(24): 11985-9, 1993 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-8265658

RESUMEN

The cyanobacterium Synechococcus sp. PCC 7942 possesses a small psbA multigene family that codes for two distinct forms of the photosystem II reaction-center protein D1 (D1:1 and D1:2). We showed previously that the normally predominant D1 form (D1:1) was rapidly replaced with the alternative D1:2 when cells adapted to a photon irradiance of 50 mumol.m-2.s-1 are shifted to 500 mumol.m-2.s-1 and that this interchange was readily reversible once cells were allowed to recover under the original growth conditions. By using the psbA inactivation mutants R2S2C3 and R2K1 (which synthesize only D1:1 and D1:2, respectively), we showed that this interchange between D1 forms was essential for limiting the degree of photoinhibition as well as enabling a rapid recovery of photosynthesis. In this report, we have extended these findings by examining whether any intrinsic functional differences exist between the two D1 forms that may afford increased resistance to photoinhibition. Initial studies on the rate of D1 degradation at three photon irradiances (50, 200, and 500 mumol.m-2.s-1) showed that the rates of degradation for both D1 forms increase with increasing photon flux density but that there was no significant difference between D1:1 and D1:2. Analysis of light-response curves for oxygen evolution for the mutants R2S2C3 and R2K1 revealed that cells with photosystem II reaction centers containing D1:2 have a higher apparent quantum yield (approximately 25%) than cells possessing D1:1. Further studies using chlorophyll a fluorescence measurements confirmed that R2K1 has a higher photochemical yield than R2S2C3; that is, a more efficient conversion of excitation energy from photon absorption into photochemistry. We believe that the higher photochemical efficiency of reaction centers containing D1:2 is causally related to the preferential induction of D1:2 at high light and thus may be an integral component of the protection mechanism within Synechococcus sp. PCC 7942 against photoinhibition.


Asunto(s)
Cianobacterias/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas Bacterianas/biosíntesis , Clorofila/análisis , Clorofila/metabolismo , Clorofila A , Cianobacterias/genética , Genes Bacterianos , Cinética , Luz , Familia de Multigenes , Mutagénesis , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/biosíntesis , Complejo de Proteína del Fotosistema II , Proteínas de Plantas/biosíntesis
10.
Photosynth Res ; 37(1): 19-39, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24317651

RESUMEN

Cold acclimation requires adjustment to a combination of light and low temperature, conditions which are potentially photoinhibitory. The photosynthetic response of plants to low temperature is dependent upon time of exposure and the developmental history of the leaves. Exposure of fully expanded leaves of winter cereals to short-term, low temperature shiftsinhibits whereas low temperature growthstimulates electron transport capacity and carbon assimilation. However, the photosynthetic response to low temperature is clearly species and cultivar dependent. Winter annuals and algae which actively grow and develop at low temperature and moderate irradiance acquire a resistance to irradiance 5- to 6-fold higher than their growth irradiance. Resistance to short-term photoinhibition (hours) in winter cereals is a reflection of the increased capacity to keep QA oxidized under high light conditions and low temperature. This is due to an increased capacity for photosynthesis. These characteristics reflect photosynthetic acclimation to low growth temperature and can be used to predict the freezing tolerance of cereals. It is proposed that the enhanced photosynthetic capacity reflects an increased flux of fixed carbon through to sucrose in source tissue as a consequence of the combined effects of increased storage of carbohydrate as fructans in the vacuole of leaf mesophyll cells and an enhanced export to the crown due to its increased sink activity. Long-term exposure (months) of cereals to low temperature photoinhibition indicates that this reduction of photochemical efficiency of PS II represents a stable, long-term down regulation of PS II to match the energy requirements for CO2 fixation. Thus, photoinhibition in vivo should be viewed as the capacity of plants to adjust photosynthetically to the prevailing environmental conditions rather than a process which necessarily results in damage or injury to plants. Not all cold tolerant, herbaceous annuals use the same mechanism to acquire resistance to photoinhibition. In contrast to annuals and algae, overwintering evergreens become dormant during the cold hardening period and generally remain susceptible to photoinhibition. It is concluded that the photosynthetic response to low temperatures and susceptibility to photoinhibition are consequences of the overwintering strategy of the plant species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA