Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(3): 746-58, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496612

RESUMEN

A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino-acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity, while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity, while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code.


Asunto(s)
Lectinas de Plantas/química , Lectinas de Plantas/genética , Fármacos Anti-VIH/química , Secuencia de Carbohidratos , Ingeniería Genética , Mitógenos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Musa/química
2.
J Med Virol ; 95(1): e28157, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36117402

RESUMEN

Coronavirus disease 2019 (COVID-19) remains a major public health concern, and vaccine unavailability, hesitancy, or failure underscore the need for discovery of efficacious antiviral drug therapies. Numerous approved drugs target protein kinases associated with viral life cycle and symptoms of infection. Repurposing of kinase inhibitors is appealing as they have been vetted for safety and are more accessible for COVID-19 treatment. However, an understanding of drug mechanism is needed to improve our understanding of the factors involved in pathogenesis. We tested the in vitro activity of three kinase inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including inhibitors of AXL kinase, a host cell factor that contributes to successful SARS-CoV-2 infection. Using multiple cell-based assays and approaches, gilteritinib, nintedanib, and imatinib were thoroughly evaluated for activity against SARS-CoV-2 variants. Each drug exhibited antiviral activity, but with stark differences in potency, suggesting differences in host dependency for kinase targets. Importantly, for gilteritinib, the amount of compound needed to achieve 90% infection inhibition, at least in part involving blockade of spike protein-mediated viral entry and at concentrations not inducing phospholipidosis (PLD), approached a clinically achievable concentration. Knockout of AXL, a target of gilteritinib and nintedanib, impaired SARS-CoV-2 variant infectivity, supporting a role for AXL in SARS-CoV-2 infection and supporting further investigation of drug-mediated AXL inhibition as a COVID-19 treatment. This study supports further evaluation of AXL-targeting kinase inhibitors as potential antiviral agents and treatments for COVID-19. Additional mechanistic studies are needed to determine underlying differences in virus response.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Antivirales/farmacología , Antivirales/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
J Am Chem Soc ; 143(36): 14748-14765, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34490778

RESUMEN

The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qß. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qß VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.


Asunto(s)
Vacunas contra la COVID-19/metabolismo , COVID-19/epidemiología , COVID-19/prevención & control , Preparaciones de Acción Retardada/química , SARS-CoV-2/metabolismo , Vacunas de Subunidad/metabolismo , Animales , Comovirus , Simulación por Computador , Composición de Medicamentos , Epítopos/química , Calor , Humanos , Masculino , Ratones Endogámicos BALB C , Nanopartículas/química , Péptidos/química , Vacunación , Vacunas de Partículas Similares a Virus/química
4.
Bioorg Med Chem Lett ; 30(23): 127599, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33031923

RESUMEN

Various (North)-methanocarba adenosine derivatives, containing rigid bicyclo[3.1.0]hexane ribose substitution, were screened for activity against representative viruses, and inhibition was observed after treatment of Enterovirus A71 with a 2-chloro-N6-1-cyclopropyl-2-methylpropan-1-yl derivative (17). µM activity was also seen when testing 17 against other enteroviruses in the Picornaviridae family. Based on this hit, structural congeners of 17, containing other N6-alkyl groups and 5' modifications, were synthesized and tested. The structure activity relationship is relatively narrow, with most modifications of the adenine or the methanocarba ring reducing or abolishing the inhibitory potency. 4'-Truncated 31 (MRS5474), 4'-fluoromethyl 48 (MRS7704) and 4'-chloromethyl 49 nucleosides displayed EC50 ~3-4 µM, and 31 and 48 achieved SI ≥10. However, methanocarba analogues of ribavirin and N6-benzyladenosine, shown previously to have anti-EV-A71 activity, were inactive. Thus, we identified methanocarba nucleosides as a new scaffold for enterovirus inhibition with a narrow structure activity relationship and no similarity to previously published anti-enteroviral nucleosides.


Asunto(s)
Adenosina/farmacología , Antivirales/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Enterovirus Humano A/efectos de los fármacos , Adenosina/síntesis química , Animales , Antivirales/síntesis química , Compuestos Bicíclicos con Puentes/síntesis química , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Células Vero
5.
J Neurovirol ; 23(2): 186-204, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27761801

RESUMEN

Neurological respiratory deficits are serious outcomes of West Nile virus (WNV) disease. WNV patients requiring intubation have a poor prognosis. We previously reported that WNV-infected rodents also appear to have respiratory deficits when assessed by whole-body plethysmography and diaphragmatic electromyography. The purpose of this study was to determine if the nature of the respiratory deficits in WNV-infected rodents is neurological and if deficits are due to a disorder of brainstem respiratory centers, cervical spinal cord (CSC) phrenic motor neuron (PMN) circuitry, or both. We recorded phrenic nerve (PN) activity and found that in WNV-infected mice, PN amplitude is reduced, corroborating a neurological basis for respiratory deficits. These results were associated with a reduction in CSC motor neuron number. We found no dramatic deficits, however, in brainstem-mediated breathing rhythm generation or responses to hypercapnia. PN frequency and pattern parameters were normal, and all PN parameters changed appropriately upon a CO2 challenge. Histological analysis revealed generalized microglia activation, astrocyte reactivity, T cell and neutrophil infiltration, and mild histopathologic lesions in both the brainstem and CSC, but none of these were tightly correlated with PN function. Similar results in PN activity, brainstem function, motor neuron number, and histopathology were seen in WNV-infected hamsters, except that histopathologic lesions were more severe. Taken together, the results suggest that respiratory deficits in acute WNV infection are primarily due to a lower motor neuron disorder affecting PMNs and the PN rather than a brainstem disorder. Future efforts should focus on markers of neuronal dysfunction, axonal degeneration, and myelination.


Asunto(s)
Tronco Encefálico/inmunología , Neuronas Motoras/inmunología , Nervio Frénico/inmunología , Médula Espinal/inmunología , Fiebre del Nilo Occidental/inmunología , Animales , Astrocitos/inmunología , Astrocitos/patología , Astrocitos/virología , Tronco Encefálico/patología , Tronco Encefálico/virología , Recuento de Células , Cricetulus , Electromiografía/métodos , Femenino , Humanos , Masculino , Ratones , Microglía/inmunología , Microglía/patología , Microglía/virología , Neuronas Motoras/patología , Neuronas Motoras/virología , Conducción Nerviosa , Infiltración Neutrófila , Nervio Frénico/patología , Nervio Frénico/virología , Médula Espinal/patología , Médula Espinal/virología , Linfocitos T/inmunología , Linfocitos T/patología , Linfocitos T/virología , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/patogenicidad , Virus del Nilo Occidental/fisiología
6.
J Antimicrob Chemother ; 69(8): 2164-74, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24777908

RESUMEN

OBJECTIVES: Emerging drug resistance to antiviral therapies is an increasing challenge for the treatment of influenza virus infections. One new antiviral compound, BTA938, a dimeric derivative of the viral neuraminidase inhibitor zanamivir, contains a 14-carbon linker bridging two zanamivir moieties. In these studies, we evaluated antiviral efficacy in cell cultures infected with influenza virus and in mouse models of lethal influenza using H1N1pdm09, H3N2 and oseltamivir-resistant (H275Y) viruses. METHODS: In vitro activity was evaluated against 22 strains of influenza virus. Additionally, in vivo studies compared the efficacy of BTA938 or zanamivir after intranasal treatment. We also tested the hypothesis of a dual mode of action for BTA938 using scanning electron microscopy (SEM). RESULTS: BTA938 inhibited the viruses at nanomolar concentrations in vitro with a median 50% effective concentration value of 0.5 nM. In mouse models, the dimer provided ∼10-fold greater protection than zanamivir. The data also showed that a single low dose (3 mg/kg) protected 100% of mice from an otherwise lethal oseltamivir-resistant (H275Y) influenza virus infection. Remarkably, a single prophylactic treatment (10 mg/kg) administered 7 days before the challenge protected 70% of mice and when administered 1 or 3 days before the challenge it protected 90% of mice. Additionally, SEM provides evidence that the increased antiviral potency may be mediated by an enhanced aggregation of virus on the cell surface. CONCLUSIONS: In vitro and in vivo experiments showed the high antiviral activity of BTA938 for the treatment of influenza virus infections. Moreover, we demonstrated that a single dose of BTA938 is sufficient for prophylactic and therapeutic protection in mouse models.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Zanamivir/análogos & derivados , Zanamivir/farmacología , Animales , Antivirales/farmacología , Perros , Combinación de Medicamentos , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Femenino , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/clasificación , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/virología , Oseltamivir/farmacología
7.
Arch Virol ; 159(6): 1279-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24311151

RESUMEN

Few anti-influenza drugs are licensed in the United States for the prevention and therapy of influenza A and B virus infections. This shortage, coupled with continuously emerging drug resistance, as detected through a global surveillance network, seriously limits our anti-influenza armamentarium. Combination therapy appears to offer several advantages over traditional monotherapy in not only delaying development of resistance but also potentially enhancing single antiviral activity. In the present study, we evaluated the antiviral drug susceptibilities of fourteen pandemic influenza A (H1N1) virus isolates in MDCK cells. In addition, we evaluated favipiravir (T-705), an investigational drug with a broad antiviral spectrum and a unique mode of action, alone and in dual combination with the neuraminidase inhibitors (NAIs) oseltamivir, peramivir, or zanamivir, against oseltamivir-sensitive pandemic influenza A/California/07/2009 (H1N1) and oseltamivir-resistant A/Hong Kong/2369/2009 (H1N1) virus. Mean inhibitory values showed that the tested virus isolates remained sensitive to commonly used antiviral drugs, with the exception of the Hong Kong virus isolate. Drug dose-response curves confirmed complete drug resistance to oseltamivir, partial sensitivity to peramivir, and retained susceptibility to zanamivir and favipiravir against the A/Hong Kong/2369/2009 virus. Three-dimensional analysis of drug interactions using the MacSynergy(TM) II program indicated an overall synergistic interaction when favipiravir was combined with the NAIs against the oseltamivir-sensitive influenza virus, and an additive effect against the oseltamivir-resistant virus. Although the clinical relevance of these drug combinations remains to be evaluated, results obtained from this study support the use of combination therapy with favipiravir and NAIs for treatment of human influenza virus infections.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Pirazinas/farmacología , Animales , Línea Celular , Perros , Farmacorresistencia Viral , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Pruebas de Sensibilidad Microbiana , Oseltamivir/farmacología
8.
J Med Chem ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687966

RESUMEN

Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.

9.
Virol J ; 10: 221, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23816343

RESUMEN

BACKGROUND: Tacaribe virus (TCRV) is a less biohazardous relative of the highly pathogenic clade B New World arenaviruses that cause viral hemorrhagic fever syndromes and require handling in maximum containment facilities not readily available to most researchers. AG129 type I and II interferon receptor knockout mice have been shown to be susceptible to TCRV infection, but the pathogenic mechanisms contributing to the lethal disease are unclear. METHODS: To gain insights into the pathogenesis of TCRV infection in AG129 mice, we assessed hematologic and cytokine responses during the course of infection, as well as changes in the permeability of the vascular endothelium. We also treated TCRV-challenged mice with MY-24, a compound that prevents mortality without affecting viral loads during the acute infection, and measured serum and tissue viral titers out to 40 days post-infection to determine whether the virus is ultimately cleared in recovering mice. RESULTS: We found that the development of viremia and splenomegaly precedes an elevation in white blood cells and the detection of high levels of proinflammatory mediators known to destabilize the endothelial barrier, which likely contributes to the increased vascular permeability and weight loss that was observed several days prior to when the mice generally succumb to TCRV challenge. In surviving mice treated with MY-24, viremia and liver virus titers were not cleared until 2-3 weeks post-infection, after which the mice began to recover lost weight. Remarkably, substantial viral loads were still present in the lung, spleen, brain and kidney tissues at the conclusion of the study. CONCLUSIONS: Our findings suggest that vascular leak may be a contributing factor in the demise of TCRV-infected mice, as histopathologic findings are generally mild to moderate in nature, and as evidenced with MY-24 treatment, animals can survive in the face of high viral loads.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/patología , Arenavirus del Nuevo Mundo/inmunología , Arenavirus del Nuevo Mundo/patogenicidad , Permeabilidad Capilar , Citocinas/metabolismo , Estructuras Animales/virología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Carga Viral , Viremia/inmunología , Viremia/patología
10.
Vaccine ; 41(39): 5730-5741, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37567799

RESUMEN

There is a major unmet need for strategies to improve the immunogenicity of vaccines to protect against highly pathogenic avian influenza strains with pandemic potential. This study tested the ability of adjuvants based on delta inulin (Advax™) alone or combined with a TLR9 agonist (Advax-CpG™) to enhance the immunogenicity of recombinant H5 hemagglutinin antigen expressed in insect cells (rH5HA) to protect mice against lethal influenza infection. The Advax-adjuvanted rH5HA induced high serum hemagglutination inhibition activity, as well as Th1 and Th2 cytokine secreting CD4 and CD8 T cells. Immunization protected mice against a lethal heterosubtypic H5N1 virus challenge. Mice immunized with an Advax-adjuvanted rHA2 stem antigen prepared by enzymatic cleavage of rH5HA produced serum antibodies devoid of hemagglutination inhibition activity, but these anti-HA2 antibodies were nevertheless able to transfer protection against lethal H1N1 or H3N2 infections to naïve mice. We hypothesize that the enhanced protection afforded by Advax-adjuvanted rH5HA may be mediated by the combination of neutralizing antibodies directed at the HA head, anti-HA2 stem antibodies plus memory CD4 + and CD8 + T cells. This outcome supports further development of the Advax-adjuvanted rH5 pandemic influenza vaccine platform.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Anticuerpos Antivirales , Subtipo H3N2 del Virus de la Influenza A , Adyuvantes Inmunológicos , Vacunas Sintéticas , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control
11.
Vaccine ; 41(38): 5592-5602, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37532610

RESUMEN

There is a major unmet need for strategies to improve the immunogenicity and effectiveness of pandemic influenza vaccines, particularly in poor responder populations such as neonates. Recombinant protein approaches to pandemic influenza offer advantages over more traditional inactivated virus approaches, as they are free of problems such as egg adaptation or need for high level biosecurity containment for manufacture. However, a weakness of recombinant proteins is their low immunogenicity. We asked whether the use of an inulin polysaccharide adjuvant (Advax) alone or combined with a TLR9 agonist (CpG55.2) would enhance the immunogenicity and protection of a recombinant hemagglutinin vaccine against H7N9 influenza (rH7HA), including in neonatal mice. Advax adjuvant induced predominantly IgG1 responses against H7HA, whereas Advax-CpG55.2 adjuvant also induced IgG2a, IgG2b and IgG3 responses, consistent with the TLR9 agonist component inducing a Th1 bias. Advax-CpG55.2 adjuvanted rH7HA induced high serum neutralizing antibody titers in adult mice. In newborns it similarly overcame immune hypo-responsiveness and enhanced serum anti-rH7HA IgG levels in 7-day-old BALB/C and C57BL/6 mice. Immunized adult mice were protected against a lethal H7N9 virus challenge. When formulated with Advax-CpG55.2 adjuvant, greater protection was seen with rH7HA than with inactivated H7 whole virus antigen. Advax-CpG55.2 adjuvanted rH7HA represents a promising influenza vaccine platform for further development.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Animales Recién Nacidos , Hemaglutininas , Receptor Toll-Like 9 , Anticuerpos Antivirales , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Adyuvantes Inmunológicos , Vacunas Sintéticas , Proteínas Recombinantes , Infecciones por Orthomyxoviridae/prevención & control
12.
Virology ; 580: 62-72, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780728

RESUMEN

Enterovirus A71 can cause serious neurological disease in young children. Animal models for EV-A71 are needed to evaluate potential antiviral therapies. Existing models have limitations, including lack of lethality or crucial disease signs. Here we report the development of an EV-A71 model in 28-day-old mice. Virus was serially passaged until it produced consistent lethality and rear-limb paralysis. Onset of disease occurred between days 6-9 post-infection, with mortality following weight loss and neurological signs on days 9-14. In addition, a single administration of human intravenous immunoglobulin at doses of 200, 400 and 800 mg/kg at 4h post-infection was evaluated in the model. Protection from weight loss, neurological signs, and mortality (between 50 and 89%) were observed at doses of 400 mg/kg or greater. Based on these results, IVIG was selected for use as a positive control in this acute model, and suggest that IVIG is a potential therapeutic for EV-A71 infections.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedades del Sistema Nervioso , Niño , Humanos , Ratones , Animales , Preescolar , Inmunoglobulinas Intravenosas/uso terapéutico , Modelos Animales de Enfermedad
13.
ACS Med Chem Lett ; 14(4): 506-513, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37077387

RESUMEN

We report for the first time the antiviral activities of two iminovirs (antiviral imino-C-nucleosides) 1 and 2, structurally related to galidesivir (Immucillin A, BCX4430). An iminovir containing the 4-aminopyrrolo[2,1-f][1,2,4-triazine] nucleobase found in remdesivir exhibited submicromolar inhibition of multiple strains of influenza A and B viruses, as well as members of the Bunyavirales order. We also report the first syntheses of ProTide prodrugs of iminovir monophosphates, which unexpectedly displayed poorer viral inhibition than their parent nucleosides in vitro. An efficient synthesis of the 4-aminopyrrolo[2,1-f][1,2,4-triazine]-containing iminovir 2 was developed to enable preliminary in vivo studies, wherein it displayed significant toxicity in BALB/c mice and limited protection against influenza. Further modification of this anti-influenza iminovir will therefore be required to improve its therapeutic value.

14.
Antiviral Res ; 216: 105654, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37327878

RESUMEN

Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Ratones , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Microscopía por Crioelectrón , Infecciones por Enterovirus/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico , Enterovirus Humano B
15.
Nat Commun ; 14(1): 1733, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977673

RESUMEN

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Animales , Humanos , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2/metabolismo , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas , Mamíferos/metabolismo
16.
iScience ; 25(10): 105074, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36093377

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide outbreak, known as coronavirus disease 2019 (COVID-19). Alongside vaccines, antiviral therapeutics is an important part of the healthcare response to COVID-19. We previously reported that TEMPOL, a small molecule stable nitroxide, inactivated the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 by causing the oxidative degradation of its iron-sulfur cofactors. Here, we demonstrate that TEMPOL is effective in vivo in inhibiting viral replication in the Syrian hamster model. The inhibitory effect of TEMPOL on SARS-CoV-2 replication was observed in animals when the drug was administered 2 h before infection in a high-risk exposure model. These data support the potential application of TEMPOL as a highly efficacious antiviral against SARS-CoV-2 infection in humans.

17.
ACS Omega ; 7(36): 31935-31944, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36097511

RESUMEN

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 µM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1ß caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.

18.
Nat Commun ; 13(1): 1891, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393402

RESUMEN

The SARS-CoV-2 3CL protease is a critical drug target for small molecule COVID-19 therapy, given its likely druggability and essentiality in the viral maturation and replication cycle. Based on the conservation of 3CL protease substrate binding pockets across coronaviruses and using screening, we identified four structurally distinct lead compounds that inhibit SARS-CoV-2 3CL protease. After evaluation of their binding specificity, cellular antiviral potency, metabolic stability, and water solubility, we prioritized the GC376 scaffold as being optimal for optimization. We identified multiple drug-like compounds with <10 nM potency for inhibiting SARS-CoV-2 3CL and the ability to block SARS-CoV-2 replication in human cells, obtained co-crystal structures of the 3CL protease in complex with these compounds, and determined that they have pan-coronavirus activity. We selected one compound, termed coronastat, as an optimized lead and characterized it in pharmacokinetic and safety studies in vivo. Coronastat represents a new candidate for a small molecule protease inhibitor for the treatment of SARS-CoV-2 infection for eliminating pandemics involving coronaviruses.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , Antivirales/química , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2
19.
Nat Med ; 28(9): 1944-1955, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982307

RESUMEN

Influenza A virus's (IAV's) frequent genetic changes challenge vaccine strategies and engender resistance to current drugs. We sought to identify conserved and essential RNA secondary structures within IAV's genome that are predicted to have greater constraints on mutation in response to therapeutic targeting. We identified and genetically validated an RNA structure (packaging stem-loop 2 (PSL2)) that mediates in vitro packaging and in vivo disease and is conserved across all known IAV isolates. A PSL2-targeting locked nucleic acid (LNA), administered 3 d after, or 14 d before, a lethal IAV inoculum provided 100% survival in mice, led to the development of strong immunity to rechallenge with a tenfold lethal inoculum, evaded attempts to select for resistance and retained full potency against neuraminidase inhibitor-resistant virus. Use of an analogous approach to target SARS-CoV-2, prophylactic administration of LNAs specific for highly conserved RNA structures in the viral genome, protected hamsters from efficient transmission of the SARS-CoV-2 USA_WA1/2020 variant. These findings highlight the potential applicability of this approach to any virus of interest via a process we term 'programmable antivirals', with implications for antiviral prophylaxis and post-exposure therapy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus de la Influenza A , Animales , Antivirales/farmacología , Virus de la Influenza A/genética , Ratones , Neuraminidasa , ARN Viral/genética , SARS-CoV-2
20.
Artículo en Inglés | MEDLINE | ID: mdl-35291211

RESUMEN

SARS-CoV-2, the novel coronavirus responsible for the COVID-19 pandemic, caused >26 million cases in the United States and >437,000 deaths as of Jan 30, 2020. Worldwide by that date, there had been 102 million cases of infections, and deaths had climbed to 2.21 million. Mutated variants of SARS-CoV-2 that have emerged from the United Kingdom, Brazil, and South Africa are associated with higher transmission rates and associated deaths. Therefore, novel therapeutic and prophylactic methods against SARS-CoV-2 are in urgent need. While some antiviral drugs, such as Remdesivir, provide relief to certain patient populations, other existing antiviral drugs or combinations of FDA approved pharmaceuticals have yet to show clinical efficacy against COVID-19. Compounds that possess strong and broad antiviral properties with different mechanisms of action against respiratory viruses may provide novel approaches to combat SARS-CoV-2 and its variants, especially if the compounds are classified as generally recognized as safe (GRAS). A large body of evidence indicates a promising potential for the use of epigallocatechin-3-gallate (EGCG) and its derivatives as effective agents against infections from a wide range of pathogenic viruses. However, EGCG or its derivatives have not been tested directly against SARS-CoV-2. The current study was designed to evaluate the potential antiviral activity of EGCG against SARS-CoV-2 infection in primate epithelial cells. Methods applied in the study include cytopathic effect (CPE) assay and virus yield reduction (VYR) assays using Vero 76 (green monkey epithelial cells) and Caco-2 (human epithelial cells) cell lines, respectively. The results demonstrated that EGCG at 0.27 µg/ml (0.59 µM) inhibited SARS-CoV-2 infection in Vero 76 cells by 50% (i.e., EC50=0.27 µg/ml). EGCG also inhibited SARS-CoV-2 infection in Caco-2 cells with EC90=28 µg/ml (61 µM). These results, to the best of our knowledge, are the first observations on the antiviral activities of EGCG against SARS-CoV-2, and suggest that EGCG and its derivatives could be used to combat COVID-19 and other respiratory viral infection-induced illness, pending in vivo and clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA