Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 38(1): 93-107, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29133435

RESUMEN

Motor rehabilitative training after stroke can improve motor function and promote topographical reorganization of remaining motor cortical movement representations, but this reorganization follows behavioral improvements. A more detailed understanding of the neural bases of rehabilitation efficacy is needed to inform therapeutic efforts to improve it. Using a rat model of upper extremity impairments after ischemic stroke, we examined effects of motor rehabilitative training at the ultrastructural level in peri-infarct motor cortex. Extensive training in a skilled reaching task promoted improved performance and recovery of more normal movements. This was linked with greater axodendritic synapse density and ultrastructural characteristics of enhanced synaptic efficacy that were coordinated with changes in perisynaptic astrocytic processes in the border region between head and forelimb areas of peri-infarct motor cortex. Disrupting synapses and motor maps by infusions of anisomycin (ANI) into anatomically reorganized motor, but not posterior parietal, cortex eliminated behavioral gains from rehabilitative training. In contrast, ANI infusion in the equivalent cortical region of intact animals had no effect on reaching skills. These results suggest that rehabilitative training efficacy for improving manual skills is mediated by synaptic plasticity in a region of motor cortex that, before lesions, is not essential for manual skills, but becomes so as a result of the training. These findings support that experience-driven synaptic structural reorganization underlies functional vicariation in residual motor cortex after motor cortical infarcts.SIGNIFICANCE STATEMENT Stroke is a leading cause of long-term disability. Motor rehabilitation, the main treatment for physical disability, is of variable efficacy. A better understanding of neural mechanisms underlying effective motor rehabilitation would inform strategies for improving it. Here, we reveal synaptic underpinnings of effective motor rehabilitation. Rehabilitative training improved manual skill in the paretic forelimb and induced the formation of special synapse subtypes in coordination with structural changes in astrocytes, a glial cell that influences neural communication. These changes were found in a region that is nonessential for manual skill in intact animals, but came to mediate this skill due to training after stroke. Therefore, motor rehabilitation efficacy depends on synaptic changes that enable remaining brain regions to assume new functions.


Asunto(s)
Astrocitos/patología , Infarto Cerebral/patología , Corteza Motora/patología , Plasticidad Neuronal , Práctica Psicológica , Sinapsis/patología , Animales , Anisomicina/toxicidad , Mapeo Encefálico , Infarto Cerebral/psicología , Modelos Animales de Enfermedad , Miembro Anterior/inervación , Miembro Anterior/fisiopatología , Masculino , Destreza Motora/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/toxicidad , Ratas , Ratas Long-Evans , Accidente Cerebrovascular/patología , Rehabilitación de Accidente Cerebrovascular
2.
J Neurosci Methods ; 170(2): 229-44, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18325597

RESUMEN

Loss of function in the hands occurs with many brain disorders, but there are few measures of skillful forepaw use in rats available to model these impairments that are both sensitive and simple to administer. Whishaw and Coles previously described the dexterous manner in which rats manipulate food items with their paws, including thin pieces of pasta [Whishaw IQ, Coles BL. Varieties of paw and digit movement during spontaneous food handling in rats: postures, bimanual coordination, preferences, and the effect of forelimb cortex lesions. Behav Brain Res 1996;77:135-48]. We set out to develop a measure of this food handling behavior that would be quantitative, easy to administer, sensitive to the effects of damage to sensory and motor systems of the CNS and useful for identifying the side of lateralized impairments. When rats handle 7 cm lengths of vermicelli, they manipulate the pasta by repeatedly adjusting the forepaw hold on the pasta piece. As operationally defined, these adjustments can be easily identified and counted by an experimenter without specialized equipment. After unilateral sensorimotor cortex (SMC) lesions, transient middle cerebral artery occlusion (MCAO) and striatal dopamine depleting (6-hydroxydopamine, 6-OHDA) lesions in adult rats, there were enduring reductions in adjustments made with the contralateral forepaw. Additional pasta handling characteristics distinguished between the lesion types. MCAO and 6-OHDA lesions increased the frequency of several identified atypical handling patterns. Severe dopamine depletion increased eating time and adjustments made with the ipsilateral forepaw. However, contralateral forepaw adjustment number most sensitively detected enduring impairments across lesion types. Because of its ease of administration and sensitivity to lateralized impairments in skilled forepaw use, this measure may be useful in rat models of upper extremity impairment.


Asunto(s)
Miembro Anterior/fisiología , Destreza Motora/fisiología , Desempeño Psicomotor/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Dopamina/metabolismo , Dopamina/fisiología , Alimentos , Ácido Homovanílico/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/psicología , Masculino , Corteza Motora/patología , Neostriado/metabolismo , Neostriado/patología , Variaciones Dependientes del Observador , Oxidopamina/toxicidad , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/patología , Técnicas Estereotáxicas , Simpaticolíticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA