Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Divers ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162644

RESUMEN

A new theobromine-derived EGFR inhibitor (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(2,6-dimethylphenyl)acetamide) has been developed that has the essential structural characteristics to interact with EGFR's pocket. The designed compound is 2,6-di ortho methylphenyl)acetamide derivative of the well-known alkaloid, theobromine, (T-1-DOMPA). Firstly, deep DFT studies have been conducted to study the optimized chemical structure, molecular orbital and chemical reactivity analysis of T-1-DOMPA. Then, T-1-DOMPA's anticancer potentialities were estimated first through a structure-based computational approach. Utilizing molecular docking, molecular dynamics, MD, simulations over 100 ns, MM-PBSA and PLIP studies, T-1-DOMPA bonded to and inhibited the EGFR protein effectively. Subsequently, the ADMET profiles of T-1-DOMPA were computed before preparation, and its drug-likeness was anticipated. Therefore, T-1-DOMPA was prepared for the purposes of scrutinizing both the design and the results obtained in silico. The in vitro potential of T-1-DOMPA against triple-negative breast cancer cell lines, MDA- MB-231, was very promising with an IC50 value of1.8 µM, comparable to the reference drug (0.9 µM), and a much higher selectivity index of 2.6. Interestingly, T-1-DOMPA inhibited three other cancer cell lines (CaCO-2, HepG-2, and A549) with IC50 values of 1.98, 2.53, and 2.39 µM exhibiting selectivity index values of 2,4, 1.9, and 2, respectively. Additionally, T-1-DOMPA prevented effectively the MDA-MB-231cell line's healing and migration abilities. Also, T-1-DOMPA's abilities to induce apoptosis were confirmed by acridine orange/ethidium bromide (AO/EB) staining assay. Finally, T-1-DOMPA caused an up-regulation of the gene expression of the apoptotic gene, Caspase-3, in the treated MDA-MB-231cell.

2.
Saudi Pharm J ; 31(12): 101852, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38028225

RESUMEN

VEGFR-2 is a significant target in cancer treatment, inhibiting angiogenesis and impeding tumor growth. Utilizing the essential pharmacophoric structural properties, a new semi-synthetic theobromine analogue (T-1-MBHEPA) was designed as VEGFR-2 inhibitor. Firstly, T-1-MBHEPA's stability and reactivity were indicated through several DFT computations. Additionally, molecular docking, MD simulations, MM-GPSA, PLIP, and essential dynamics (ED) experiments suggested T-1-MBHEPA's strong binding capabilities to VEGFR-2. Its computational ADMET profiles were also studied before the semi-synthesis and indicated a good degree of drug-likeness. T-1-MBHEPA was then semi-synthesized to evaluate the design and the in silico findings. It was found that, T-1-MBHEPA inhibited VEGFR-2 with an IC50 value of 0.121 ± 0.051 µM, as compared to sorafenib which had an IC50 value of 0.056 µM. Similarly, T-1-MBHEPA inhibited the proliferation of HepG2 and MCF7 cell lines with IC50 values of 4.61 and 4.85 µg/mL respectively - comparing sorafenib's IC50 values which were 2.24 µg/mL and 3.17 µg/mL respectively. Interestingly, T-1-MBHEPA revealed a noteworthy IC50 value of 80.0 µM against the normal cell lines exhibiting exceptionally high selectivity indexes (SI) of 17.4 and 16. 5 against the examined cell lines, respectively. T-1-MBHEPA increased the percentage of apoptotic MCF7 cells in early and late stages, respectively, from 0.71 % to 7.22 % and from 0.13 % to 2.72 %, while the necrosis percentage was increased to 11.41 %, in comparison to 2.22 % in control cells. Furthermore, T-1-MBHEPA reduced the production of pro-inflammatory cytokines TNF-α and IL-2 in the treated MCF7 cells by 33 % and 58 %, respectively indicating an additional anti-angiogenic mechanism. Also, T-1-MBHEPA decreased significantly the potentialities of MCF7 cells to heal and migrate from 65.9 % to 7.4 %. Finally, T-1-MBHEPA's oral treatment didn't show toxicity on the liver function (ALT and AST) and the kidney function (creatinine and urea) levels of mice.

3.
Molecules ; 27(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144596

RESUMEN

Based on the pharmacophoric features of EGFR inhibitors, a new semisynthetic theobromine-derived compound was designed to interact with the catalytic pocket of EGFR. Molecular docking against wild (EGFRWT; PDB: 4HJO) and mutant (EGFRT790M; PDB: 3W2O) types of EGFR-TK indicated that the designed theobromine derivative had the potential to bind to that pocket as an antiangiogenic inhibitor. The MD and MM-GBSA experiments identified the exact binding with optimum energy and dynamics. Additionally, the DFT calculations studied electrostatic potential, stability, and total electron density of the designed theobromine derivative. Both in silico ADMET and toxicity analyses demonstrated its general likeness and safety. We synthesized the designed theobromine derivative (compound XI) which showed an IC50 value of 17.23 nM for EGFR inhibition besides IC50 values of 21.99 and 22.02 µM for its cytotoxicity against A549 and HCT-116 cell lines, respectively. Interestingly, compound XI expressed a weak cytotoxic potential against the healthy W138 cell line (IC50 = 49.44 µM, 1.6 times safer than erlotinib), exhibiting the high selectivity index of 2.2. Compound XI arrested the growth of A549 at the G2/M stage and increased the incidence of apoptosis.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Teobromina/farmacología
4.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889478

RESUMEN

A nicotinamide-based derivative was designed as an antiproliferative VEGFR-2 inhibitor with the key pharmacophoric features needed to interact with the VEGFR-2 catalytic pocket. The ability of the designed congener ((E)-N-(4-(1-(2-(4-benzamidobenzoyl)hydrazono)ethyl)phenyl)nicotinamide), compound 10, to bind with the VEGFR-2 enzyme was demonstrated by molecular docking studies. Furthermore, six various MD simulations studies established the excellent binding of compound 10 with VEGFR-2 over 100 ns, exhibiting optimum dynamics. MM-GBSA confirmed the proper binding with a total exact binding energy of -38.36 Kcal/Mol. MM-GBSA studies also revealed the crucial amino acids in the binding through the free binding energy decomposition and declared the interactions variation of compound 10 inside VEGFR-2 via the Protein-Ligand Interaction Profiler (PLIP). Being new, its molecular structure was optimized by DFT. The DFT studies also confirmed the binding mode of compound 10 with the VEGFR-2. ADMET (in silico) profiling indicated the examined compound's acceptable range of drug-likeness. The designed compound was synthesized through the condensation of N-(4-(hydrazinecarbonyl)phenyl)benzamide with N-(4-acetylphenyl)nicotinamide, where the carbonyl group has been replaced by an imine group. The in-vitro studies were consonant with the obtained in silico results as compound 10 prohibited VEGFR-2 with an IC50 value of 51 nM. Compound 10 also showed antiproliferative effects against MCF-7 and HCT 116 cancer cell lines with IC50 values of 8.25 and 6.48 µM, revealing magnificent selectivity indexes of 12.89 and 16.41, respectively.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Niacinamida/química , Niacinamida/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
5.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431818

RESUMEN

(E)-N-(3-(1-(2-(4-(2,2,2-Trifluoroacetamido)benzoyl)hydrazono)ethyl)phenyl)nicotinamide (compound 10) was designed as an antiangiogenic VEGFR-2 inhibitor with the essential pharmacophoric structural properties to interact with the catalytic pocket of VEGFR-2. The designed derivative was synthesized, and its structure was confirmed through Ms, elemental, 1H, and 13C spectral data. The potentiality of the designed pyridine derivative to bind with and inhibit the vascular endothelial growth factor receptor-2 (VEGFR-2) enzyme was indicated by molecular docking assessments. In addition, six molecular dynamic (MD) experiments proved its correct binding with VEGFR-2 over 100 ns. Additionally, the molecular mechanics energies, combined with the generalized born and surface area (MM-GBSA) analysis, identified the precise binding with optimum energy. To explore the stability and reactivity of the designed pyridine derivative, density functional theory (DFT) calculations, including electrostatic potential maps and total electron density, were carried out. Additionally, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis demonstrated its general likeness and its safety. The designed compound was synthesized to evaluate its effects against VEGFR-2 protein, cancer, and normal cells. The in vitro results were concordant with the in silico results, because the new pyridine derivative (compound 10) displayed VEGFR-2 inhibition with an IC50 value of 65 nM and displayed potent cytotoxic properties against hepatic (HepG2) and breast (MCF-7) cancer cell lines with IC50 values of 21.00 and 26.10 µM, respectively; additionally, it exhibited high selectivity indices against the normal cell lines (W-38) of 1.55 and 1.25, respectively. The obtained results present compound 10 as a new lead VEGFR-2 inhibitor for further biological investigation and chemical modifications.


Asunto(s)
Niacinamida , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Niacinamida/farmacología , Factor A de Crecimiento Endotelial Vascular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
6.
ACS Omega ; 9(14): 15861-15881, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617602

RESUMEN

AIM: The aim of this study was to design and examine a novel epidermal growth factor receptor (EGFR) inhibitor with apoptotic properties by utilizing the essential structural characteristics of existing EGFR inhibitors as a foundation. METHOD: The study began with the natural alkaloid theobromine and developed a new semisynthetic derivative (T-1-PMPA). Computational ADMET assessments were conducted first to evaluate its anticipated safety and general drug-likeness. Deep density functional theory (DFT) computations were initially performed to validate the three-dimensional (3D) structure and reactivity of T-1-PMPA. Molecular docking against the EGFR proteins was conducted to investigate T-1-PMPA's binding affinity and inhibitory potential. Additional molecular dynamics (MD) simulations over 200 ns along with MM-GPSA, PLIP, and principal component analysis of trajectories (PCAT) experiments were employed to verify the binding and inhibitory properties of T-1-PMPA. Afterward, T-1-PMPA was semisynthesized to validate the proposed design and in silico findings through several in vitro examinations. RESULTS: DFT studies indicated T-1-PMPA's reactivity using electrostatic potential, global reactive indices, and total density of states. Molecular docking, MD simulations, MM-GPSA, PLIP, and ED suggested the binding and inhibitory properties of T-1-PMPA against the EGFR protein. The in silico ADMET predicted T-1-PMPA's safety and general drug-likeness. In vitro experiments demonstrated that T-1-PMPA effectively inhibited EGFRWT and EGFR790m, with IC50 values of 86 and 561 nM, respectively, compared to Erlotinib (31 and 456 nM). T-1-PMPA also showed significant suppression of the proliferation of HepG2 and MCF7 malignant cell lines, with IC50 values of 3.51 and 4.13 µM, respectively. The selectivity indices against the two cancer cell lines indicated the overall safety of T-1-PMPA. Flow cytometry confirmed the apoptotic effects of T-1-PMPA by increasing the total percentage of apoptosis to 42% compared to 31, and 3% in Erlotinib-treated and control cells, respectively. The qRT-PCR analysis further supported the apoptotic effects by revealing significant increases in the levels of Casp3 and Casp9. Additionally, T-1-PMPA controlled the levels of TNFα and IL2 by 74 and 50%, comparing Erlotinib's values (84 and 74%), respectively. CONCLUSION: In conclusion, our study's findings suggest the potential of T-1-PMPA as a promising apoptotic anticancer lead compound targeting the EGFR.

7.
Heliyon ; 10(2): e24005, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298627

RESUMEN

In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 µM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 µM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.

8.
Biochim Biophys Acta Gen Subj ; 1868(6): 130599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521471

RESUMEN

BACKGROUND: VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM: Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS: Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS: Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 µM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 µM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 µM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION: Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Tiazolidinedionas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Tiazolidinedionas/farmacología , Tiazolidinedionas/química , Tiazolidinedionas/síntesis química , Células MCF-7 , Células Hep G2 , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Ensayos de Selección de Medicamentos Antitumorales , Sorafenib/farmacología , Sorafenib/química , Simulación de Dinámica Molecular , Movimiento Celular/efectos de los fármacos
9.
Environ Sci Pollut Res Int ; 30(4): 8928-8955, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35460480

RESUMEN

Extensive studies have shown that doping can enhance the properties of graphene, but the application to real industrial wastewater treatment and theoretical calculations are limited. In this study, the hybrid nanoadsorbent Cu, N co-doped graphene (Cu@NG) was successfully synthesized via green route using carbon rods from waste dry batteries, human urine and copper nitrate, then multiple characterizations, detailed density functional theory (DFT) theoretical calculations and comprehensive actual wastewater tests are performed in environmental applications to investigate the adsorption properties and mechanism. The results showed that Cu@NG surface is mesoporous, decorated with CuO crystals and doped with N atoms. The isotherms and kinetics were simulated by Langmuir and pseudo-second-order models, respectively. The theoretical maximum sorption for MB and CV on Cu@NG is 116.28 mg·g-1 and CV is 86.96 mg·g-1, respectively. Pilot tests with Cu@NG on real textile wastewater showed that COD, BOD and color were removed by 54.2%, 55.2% and 86.4%, respectively. The desorption rate of Cu@NG is approximately above 90% for both MB and CV on Cu@NG after six cycles of treatment. The DFT calculations confirmed the experimental results as MB is more reactive than CV molecules. Besides, interactions have been systematically investigated via topology and natural bond orbital (NBO) analyses. The process mechanism involved mainly electrostatic adsorption, π-π stacking interactions and H-bonding interactions and ion exchange.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Grafito/química , Adsorción , Porosidad , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
10.
Life (Basel) ; 13(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36676140

RESUMEN

A new lead compound has been designed as an antiangiogenic EGFR inhibitor that has the pharmacophoric characteristics to bind with the catalytic pocket of EGFR protein. The designed lead compound is a (para-chloro)acetamide derivative of the alkaloid, theobromine, (T-1-PCPA). At first, we started with deep density functional theory (DFT) calculations for T-1-PCPA to confirm and optimize its 3D structure. Additionally, the DFT studies identified the electrostatic potential, global reactive indices and total density of states expecting a high level of reactivity for T-1-PCPA. Secondly, the affinity of T-1-PCPA to bind and inhibit the EGFR protein was studied and confirmed through detailed structure-based computational studies including the molecular docking against EGFRWT and EGFRT790M, Molecular dynamics (MD) over 100 ns, MM-GPSA and PLIP experiments. Before the preparation, the computational ADME and toxicity profiles of T-1-PCPA have been investigated and its safety and the general drug-likeness predicted. Accordingly, T-1-PCPA was semi-synthesized to scrutinize the proposed design and the obtained in silico results. Interestingly, T-1-PCPA inhibited in vitro EGFRWT with an IC50 value of 25.35 nM, comparing that of erlotinib (5.90 nM). Additionally, T-1-PCPA inhibited the growth of A549 and HCT-116 malignant cell lines with IC50 values of 31.74 and 20.40 µM, respectively, comparing erlotinib that expressed IC50 values of 6.73 and 16.35 µM, respectively.

11.
Comput Biol Chem ; 106: 107928, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37480629

RESUMEN

In this study, new thieno[2,3-d]pyrimidine derivatives that could have potential anticancer activity by inhibiting the VEGFR-2 receptor have been designed, synthesized, and investigated. The thieno[2,3-d]pyrimidine derivatives showed strong in vitro abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two different types of cancer cells, MCF-7 and HepG2. Particularly, compound 22 showed the most potent anti-VEGFR-2 activity with an IC50 value of 0.58 µM. Additionally, compound 22 exhibited good anti-proliferative activity against both MCF-7 and HepG2 cancer cell lines, with IC50 values of 11.32 ± 0.32 and 16.66 ± 1.22 µM, respectively. Further investigations revealed that compound 22 induced cell cycle arrest at the G2/M phase and promoted both early and late apoptosis in the MCF-7 cancer cells. Compound 22 also increased the level of BAX (2.8-fold), and reduced the level of Bcl-2 (2.2-fold), hence increasing the rate of apoptosis. Compound 22 also revealed 2.9-fold and 2.8-fold higher levels of caspase-8 and caspase-9, respectively, in the treated MCF-7 cancer cells compared to the control cell lines. The MD simulations showed that the VEGFR-2-22 complex was structurally and energytically stable over 100 ns, while the MM-GBSA study indicated its stable thermodynamic behavior. The bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-22 complex, while the DFT studies provided optimized geometry, charge distribution, FMO, ESP, the total density of state, and QTAIM maps of compound 22. Finally, computational ADMET studies were performed to assess the drug development potential of the thieno[2,3-d]pyrimidine derivatives. Overall, this study suggests that compound 22 has the potential as an anticancer lead compound by inhibiting VEGFR-2, which may be a guide for future drug design and development.


Asunto(s)
Antineoplásicos , Pirimidinas , Pirimidinas/farmacología , Antineoplásicos/farmacología , Apoptosis , Línea Celular , Diseño de Fármacos
12.
RSC Adv ; 13(33): 23285-23307, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37538515

RESUMEN

This study aimed to design anticancer theobromine derivatives inhibiting VEGFR-2. The new compounds were tested in vitro to evaluate their effectiveness against MCF-7 and HepG2 cancer cell lines. Among these compounds, 15a showed the highest cytotoxicity against HepG2, with an IC50 value of 0.76 µM, and significant anti-proliferative effects on MCF-7, with an IC50 value of 1.08 µM. Notably, the selectivity index of 15a against the two cancer cells was 98.97 and 69.64, respectively. Moreover, 15a demonstrated potent VEGFR-2 inhibitory activity (IC50 = 0.239 µM). Further investigations revealed that 15a induced apoptosis in HepG2 cells, significantly increasing early-stage and late-stage apoptosis percentages from 3.06% and 0.71% to 29.49% and 9.63%, respectively. It also upregulated caspase-3 and caspase-9 levels by 3.45-fold and 2.37-fold, respectively compared to control HepG2 cells. Additionally, 15a inhibited the migration and wound healing ability of HepG2 cells. Molecular docking confirmed the binding affinities of the semi-synthesized compounds to VEGFR-2, consistent with in vitro results. Several computational analyses (DFT, MD simulations, MM-GBSA, PLIP, and essential dynamics) supported the stability of the 15a-VEGFR-2 complex. Overall, the biological and computational findings suggest that compound 15a could be a promising lead compound for the development of a novel apoptotic anticancer agent.

13.
RSC Adv ; 13(33): 23365-23385, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37545598

RESUMEN

In this work, new thieno[2,3-d]pyrimidine-derived compounds possessing potential anticancer activities were designed and synthesized to target VEGFR-2. The thieno[2,3-d]pyrimidine derivatives were tested in vitro for their abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two types of cancer cells, MCF-7 and HepG2. Compound 18 exhibited the strongest anti-VEGFR-2 potential with an IC50 value of 0.084 µM. Additionally, it displayed excellent proliferative effects against MCF-7 and HepG2 cancer cell lines, with IC50 values of 10.17 µM and 24.47 µM, respectively. Further studies revealed that compound 18 induced cell cycle arrest in G2/M phase and promoted apoptosis in MCF-7 cancer cells. Apoptosis was stimulated by compound 18 by increasing BAX (3.6-fold) and decreasing Bcl-2 (3.1-fold). Additionally, compound 18 significantly raised the levels of caspase-8 (2.6-fold) and caspase-9 (5.4-fold). Computational techniques were also used to investigate the VEGFR-2-18 complex at a molecular level. Molecular docking and molecular dynamics simulations were performed to assess the structural and energetic features of the complex. The protein-ligand interaction profiler analysis identified the 3D interactions and binding conformation of the VEGFR-2-18 complex. Essential dynamics (ED) study utilizing principal component analysis (PCA) described the protein dynamics of the VEGFR-2-18 complex at various spatial scales. Bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-18 complex. In addition, the DFT studies provided insights into the structural and electronic properties of compound 18. Finally, computational ADMET and toxicity studies were conducted to evaluate the potential of the thieno[2,3-d]pyrimidine derivatives for drug development. The results of the study suggested that compound 18 could be a promising anticancer agent that may provide effective treatment options for cancer patients. Furthermore, the computational techniques used in this research provided valuable insights into the molecular interactions of the VEGFR-2-18 complex, which may guide future drug design efforts. Overall, this study highlights the potential of thieno[2,3-d]pyrimidine derivatives as a new class of anticancer agents and provides a foundation for further research in this area.

14.
Comput Biol Chem ; 107: 107953, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37673011

RESUMEN

A group of theobromine derivatives was designed based on the key pharmacophoric characteristics of VEGFR-2 inhibitors. HepG2 and MCF-7 cancer cell lines were used to test the obtained compounds for their in vitro anti-proliferative activities. Compound 15 (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(4-(1-(2-(4-hydroxybenzoyl)hydrazono)ethyl) phenyl)acetamide) was the most potent cytotoxic member against MCF-7 (IC50 = 0.42 µM) and HepG2 (IC50 = 0.22 µM). The effectiveness of VEGFR-2 inhibition was assessed for compound 15, and its IC50 value was calculated to be 0.067 µM. Additional cellular mechanistic investigations showed that compound 15 dramatically increased the population of apoptotic HepG2 cells in both early and late apoptosis. The investigation of apoptotic markers confirmed that compound 15 upregulated the levels of BAX (2.26-fold) and downregulated the levels of Bcl-2 (4.4-fold). The molecular docking investigations, MM-GPSA, PLIP studies, and MD simulations validated the potential of compound 15 to be a VEGFR-2 inhibitor. DFT calculations have been completed to comprehend how the electrical charge is distributed within compound 15 and to predict how it would bond to VEGFR-2. Lastly, ADMET prediction showed that the designed members have drug-like characteristics and minimal levels of toxicity. In conclusion, our in vitro and in silico investigations showed that compound 15 exhibited promising apoptotic anticancer potential through the suppression of VEGFR-2.


Asunto(s)
Antineoplásicos , Teobromina , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular , Simulación por Computador , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Teobromina/química , Teobromina/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
15.
J Biomol Struct Dyn ; 41(16): 7986-8001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36184591

RESUMEN

In agreement with the general features of VEGFR-2 inhibitors, a new naphthalene analog (compound 7) has been designed and synthesized. The inhibitory potential of compound 7 was indicated by the proper binding and the perfect energy of -21.10 kcal/mol compared to sorafenib (-21.22) in the molecular docking studies. Next, six MD simulation studies over 100 ns (RMSD, RMSF, SASA, RoG, hydrogen bonding, and distance between the center of mass) confirmed the accurate interaction of compound 7 with the catalytic pocket of VEGFR-2. Similarly, an MM-GBSA established proper binding showing an exact total binding energy of -36.95 ± 3.03 kcal/Mol. Additionally, the MM-GBSA experiment indicated the vital amino acids in the binding process. Types and number of interactions of compound 7 with catalytic pocket of VEGFR-2 were determined through Protein-Ligand Interaction Profiler (PLIP). As a new compound, the DFT was employed to optimize the molecular structure of compound 7. The DFT experiments also verified the interaction features of compound 7 with the VEGFR-2 active site. In silico ADMET experiments revealed the general drug-likeness of compound 7. Fascinatingly, the in vitro examinations were consistent with the in silico experiments as compound 7 inhibited the VEGFR-2 enzyme with an IC50 value of 37 nM. Captivatingly, compound 7 inhibited both MCF-7 and HCT 116 cancer cells exhibiting IC50 values of 10.56 and 7.07 µM exhibiting excellent selectivity indexes of 9.04 and 13.50, respectively.Communicated by Ramaswamy H. Sarma.

16.
Comput Biol Chem ; 107: 107958, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37714080

RESUMEN

Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.


Asunto(s)
Antineoplásicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Tiazolidinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
17.
PLoS One ; 18(3): e0282586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36893122

RESUMEN

A new semisynthetic derivative of the natural alkaloid, theobromine, has been designed as a lead antiangiogenic compound targeting the EGFR protein. The designed compound is an (m-tolyl)acetamide theobromine derivative, (T-1-MTA). Molecular Docking studies have shown a great potential for T-1-MTA to bind to EGFR. MD studies (100 ns) verified the proposed binding. By MM-GBSA analysis, the exact binding with optimal energy of T-1-MTA was also identified. Then, DFT calculations were performed to identify the stability, reactivity, electrostatic potential, and total electron density of T-1-MTA. Furthermore, ADMET analysis indicated the T-1-MTA's general likeness and safety. Accordingly, T-1-MTA has been synthesized to be examined in vitro. Intriguingly, T-1-MTA inhibited the EGFR protein with an IC50 value of 22.89 nM and demonstrated cytotoxic activities against the two cancer cell lines, A549, and HCT-116, with IC50 values of 22.49, and 24.97 µM, respectively. Interestingly, T-1-MTA's IC50 against the normal cell lines, WI-38, was very high (55.14 µM) indicating high selectivity degrees of 2.4 and 2.2, respectively. Furthermore, the flow cytometry analysis of A549 treated with T-1-MTA showed significantly increased ratios of early apoptosis (from 0.07% to 21.24%) as well as late apoptosis (from 0.73% to 37.97%).


Asunto(s)
Antineoplásicos , Teobromina , Teobromina/farmacología , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Descubrimiento de Drogas , Receptores ErbB/metabolismo , Relación Estructura-Actividad , Proliferación Celular , Inhibidores de Proteínas Quinasas/química
18.
Evol Bioinform Online ; 19: 11769343231217916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046652

RESUMEN

The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.

19.
Future Med Chem ; 15(22): 2065-2086, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37955128

RESUMEN

Background: VEGFR-2 is a key regulator of cancer cell proliferation, migration and angiogenesis. Aim: Development of thieno[2,3-d]pyrimidine derivatives as potential anti-cancer agents targeting VEGFR-2. Methods: Seven in vitro and nine in silico studies were conducted. Results: Compound 10d demonstrated strong anticancer potential, boosting apoptosis based on VEGFR-2 inhibition. It arrested the S phase of the cell cycle and upregulated the apoptotic factors. Docking and molecular dynamics simulation studies confirm the stability of the VEGFR-2-10d complex and suggest that these compounds have good binding affinities to VEGFR-2. In addition, the drug-likeness was confirmed. Conclusion: Thieno[2,3-d]pyrimidines, particularly compound 10d, has good anticancer effects and may contribute to the development of new anticancer therapies.

20.
Pathol Res Pract ; 252: 154924, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956639

RESUMEN

BACKGROUND: This study focuses on the development and evaluation of (E)-N-(3-(1-(2-(4-bromobenzoyl)hydrazono)ethyl)phenyl)nicotinamide (BHEPN) as a potential inhibitor of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2). METHODS: Computational investigations as density function theory (DFT), docking, molecular dynamics (MD) simulations, and ADMET) in addition to in vitro (VEGFR-2 inhibition, cytotoxicity against HepG2 and MCF-7 cancer cell lines, selectivity index, cells cycle analysis, apoptosis investigation, and cells migration assay) studies were conducted. RESULTS: DFT calculations determined the three-dimensional structure and indicated the reactivity of BHEPN. Molecular docking, and MD simulations analysis showed the BHEPN's binding affinity and its potential as a VEGFR-2 inhibitor. ADMET assessments predicted BHEPN's safety and drug-like characteristics. In vitro investigations confirmed the inhibition of VEGFR-2 with an IC50 value of 0.320 ± 0.012 µM. BHEPN also exhibited remarkable cytotoxic effects against HepG2 and MCF-7 cancer cell lines, with IC50 values of 0.19 ± 0.01 µM and 1.18 ± 0.01 µM, respectively, outperforming Sorafenib's IC50 values (2.24 ± 0.06 µM and 3.17 ± 0.01 µM), respectively. Notably, BHEPN displayed a higher IC50 value of 4.11 ± 0 µM against the non-carcinogenic Vero cell lines, indicating selectivity index values of 21.6 and 3.4 against the tested cancer cell lines, respectively. In a flow cytometry assay, BHEPN induced HepG2 cell cycle arrest at the G1/S phase. Moreover, BHEPN increased the incidence of early and late apoptosis in HepG2 cell lines (from 1.38% and 0.22%) in control cells to (4.11-26.02%) in the treated cells, respectively. Additionally, the percentage of necrosis raised to 13.39%, in contrast to 0.62% in control cells. Finally, BHEPN was able to reduce the migration and wound healing abilities in HepG2 cells to 38.89% compared to 87.92% in untreated cells after 48 h. These in vitro results aligned with the computational predictions, providing strong evidence of BHEPN's efficacy and safety in anticancer applications. CONCLUSIONS: BHEPN is a promising candidate for the development of novel anticancer agents through further in vitro and in vivo investigations.


Asunto(s)
Antineoplásicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Simulación del Acoplamiento Molecular , Factor A de Crecimiento Endotelial Vascular , Muerte Celular , Apoptosis , Antineoplásicos/farmacología , Proliferación Celular , Inhibidores de Proteínas Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA