Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Metab ; 35(12): 2153-2164.e4, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37951214

RESUMEN

Nerve injuries cause permanent neurological disability due to limited axonal regeneration. Injury-dependent and -independent mechanisms have provided important insight into neuronal regeneration, however, common denominators underpinning regeneration remain elusive. A comparative analysis of transcriptomic datasets associated with neuronal regenerative ability revealed circadian rhythms as the most significantly enriched pathway. Subsequently, we demonstrated that sensory neurons possess an endogenous clock and that their regenerative ability displays diurnal oscillations in a murine model of sciatic nerve injury. Consistently, transcriptomic analysis showed a time-of-day-dependent enrichment for processes associated with axonal regeneration and the circadian clock. Conditional deletion experiments demonstrated that Bmal1 is required for neuronal intrinsic circadian regeneration and target re-innervation. Lastly, lithium enhanced nerve regeneration in wild-type but not in clock-deficient mice. Together, these findings demonstrate that the molecular clock fine-tunes the regenerative ability of sensory neurons and propose compounds affecting clock pathways as a novel approach to nerve repair.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Regeneración Nerviosa/fisiología , Células Receptoras Sensoriales , Factores de Transcripción ARNTL/genética
3.
Elife ; 52016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27759565

RESUMEN

Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity. Neurotrophin-3 normalized the short latency Hoffmann reflex to a treated hand muscle as well as low threshold polysynaptic spinal reflexes involving afferents from other treated muscles. Neurotrophin-3 also enhanced locomotor recovery. Furthermore, the balance of inhibitory and excitatory boutons in the spinal cord and the level of an ion co-transporter in motor neuron membranes required for normal reflexes were normalized. Our findings pave the way for Neurotrophin-3 as a therapy that treats the underlying causes of spasticity and not only its symptoms.


Asunto(s)
Locomoción , Factores de Crecimiento Nervioso/metabolismo , Tractos Piramidales/lesiones , Reflejo Anormal/efectos de los fármacos , Espasmo/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Terapia Genética/métodos , Inyecciones Intramusculares , Factores de Crecimiento Nervioso/genética , Neurotrofina 3 , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resultado del Tratamiento
4.
Methods Mol Biol ; 1162: 189-207, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24838969

RESUMEN

Recombinant adeno-associated viral (AAV) vectors are one of the most promising therapeutic delivery systems for gene therapy to the central nervous system (CNS). Preclinical testing of novel gene therapies requires the careful design and production of AAV vectors and their successful application in a model of CNS injury. One major limitation of AAV vectors is their limited packaging capacity (<5 kb) making the co-expression of two genes (e.g., from two promoters) difficult. An internal ribosomal entry site has been used to express two genes: However, the second transgene is often expressed at lower levels than the first. In addition to this, achieving high levels of transduction in the CNS can be challenging. In this chapter we describe the cloning of a bicistronic AAV vector that uses the foot-and-mouth disease virus 2A sequence to efficiently express two genes from a single promoter. Bicistronic expression of a therapeutic gene and a reporter gene is desirable so that the axons from transduced neurons can be tracked and, after CNS injury, the amount of axonal sprouting or regeneration quantified. We go on to describe how to perform a pyramidotomy model of CNS injury and the injection of AAV vectors into the sensorimotor cortex to provide efficient transduction and bicistronic gene expression in cortical neurons such that transduced axons are detectable in the dorsal columns of the spinal cord.


Asunto(s)
Sistema Nervioso Central/lesiones , Dependovirus/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/uso terapéutico , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Clonación Molecular/métodos , Electroporación/métodos , Femenino , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Histocitoquímica/métodos , Inyecciones , Microscopía/métodos , Datos de Secuencia Molecular , Regeneración Nerviosa , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA