Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurosci ; 43(15): 2767-2781, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36894317

RESUMEN

To better understand how prefrontal networks mediate forms of cognitive control disrupted in schizophrenia, we translated a variant of the AX continuous performance task that measures specific deficits in the human disease to 2 male monkeys and recorded neurons in PFC and parietal cortex during task performance. In the task, contextual information instructed by cue stimuli determines the response required to a subsequent probe stimulus. We found parietal neurons encoding the behavioral context instructed by cues that exhibited nearly identical activity to their prefrontal counterparts (Blackman et al., 2016). This neural population switched their preference for stimuli over the course of the trial depending on whether the stimuli signaled the need to engage cognitive control to override a prepotent response. Cues evoked visual responses that appeared in parietal neurons first, whereas population activity encoding contextual information instructed by cues was stronger and more persistent in PFC. Increasing cognitive control demand biased the representation of contextual information toward the PFC and augmented the temporal correlation of task-defined information encoded by neurons in the two areas. Oscillatory dynamics in local field potentials differed between cortical areas and carried as much information about task conditions as spike rates. We found that, at the single-neuron level, patterns of activity evoked by the task were nearly identical between the two cortical areas. Nonetheless, distinct population dynamics in PFC and parietal cortex were evident. suggesting differential contributions to cognitive control.SIGNIFICANCE STATEMENT We recorded neural activity in PFC and parietal cortex of monkeys performing a task that measures cognitive control deficits in schizophrenia. This allowed us to characterize computations performed by neurons in the two areas to support forms of cognitive control disrupted in the disease. Subpopulations of neurons in the two areas exhibited parallel modulations in firing rate; and as a result, all patterns of task-evoked activity were distributed between PFC and parietal cortex. This included the presence in both cortical areas of neurons reflecting proactive and reactive cognitive control dissociated from stimuli or responses in the task. However, differences in the timing, strength, synchrony, and correlation of information encoded by neural activity were evident, indicating differential contributions to cognitive control.


Asunto(s)
Señales (Psicología) , Corteza Prefrontal , Humanos , Masculino , Corteza Prefrontal/fisiología , Lóbulo Parietal/fisiología , Neuronas/fisiología , Cognición/fisiología
3.
Neurochem Int ; 139: 104816, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32758590

RESUMEN

Patients with Parkinson's disease (PD) show a common progressive neurodegenerative movement disorder characterized by rigidity, tremors, postural instability, and bradykinesia due to the loss of dopaminergic neurons in the substantia nigra, and is often accompanied by several non-motor symptoms, called parkinsonism. Several lines of recent evidence support the hypothesis that mutations in the gene encoding phosphoglycerate kinase (PGK) play an important role in the PD mechanism. PGK is a key enzyme in the glycolytic pathway that catalyzes the reaction from 1,3-diphosphoglycerate to 3-phosphoglycerate. We herein established a parkinsonism model targeting Drosophila Pgk. Dopaminergic (DA) neuron-specific Pgk knockdown lead to locomotive defects in both young and aged adult flies and was accompanied by progressive DA neuron loss with aging. Pgk knockdown in DA neurons decreased dopamine levels in the central nervous system (CNS) of both young and aged adult flies. These phenotypes are similar to the defects observed in human PD patients, suggesting that the Pgk knockdown flies established herein are a promising model for parkinsonism. Furthermore, pan-neuron-specific Pgk knockdown induced low ATP levels and the accumulation of reactive oxygen species (ROS) in the CNS of third instar larvae. Collectively, these results indicate that a failure in the energy production system of Pgk knockdown flies causes locomotive defects accompanied by neuronal dysfunction and degeneration in DA neurons.


Asunto(s)
Neuronas Dopaminérgicas/enzimología , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/genética , Fosfoglicerato Quinasa/antagonistas & inhibidores , Fosfoglicerato Quinasa/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Neuronas Dopaminérgicas/patología , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Humanos , Trastornos Parkinsonianos/patología , Fosfoglicerato Quinasa/deficiencia
4.
Sci Rep ; 8(1): 4468, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535397

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Many factors have been shown to contribute to its pathogenesis including genetic and environmental factors. Ubiquitin C-terminal hydrolase L1 (UCHL1) is also known to be involved in the pathogenesis of PD. We herein modeled the study of UCHL1 in Drosophila melanogaster and investigated its functions in PD. The specific knockdown of the Drosophila ortholog of UCHL1 (dUCH) in dopaminergic neurons (DA neurons) led to the underdevelopment and/or degeneration of these neurons, specifically in DL1 DA neuron cluster in the larval brain lobe and PPM2, PPM3, PPL2ab, and VUM DA neuron clusters in the adult brain. These defects were followed by a shortage of dopamine in the brain, which subsequently resulted in locomotor dysfunction. The degeneration of DA neurons in dUCH knockdown adult brain, which occurred progressively and severely during the course of aging, mimics the epidemiology of PD. DA neuron and locomotor defects were rescued when dUCH knockdown flies were treated with vitamin C, a well-known antioxidant. These results suggest that dUCH knockdown fly is a promising model for studying the pathogenesis and epidemiology of PD as well as the screening of potential antioxidants for PD therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Proteínas de Drosophila/genética , Enfermedad de Parkinson/genética , Ubiquitina Tiolesterasa/genética , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/farmacología , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA