Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biomed Opt Express ; 14(5): 1992-2002, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206149

RESUMEN

Picosecond Nd:YAG lasers using diffractive optical elements (DOE) and micro-lens arrays (MLA) have widely been used in dermatology for the treatment of pigmented lesions and skin rejuvenation. This study designed and developed a new optical element of diffractive micro-lens array (DLA) by combing the features of DOE and MLA in order to achieve uniform and selective laser treatment. Both optical simulation and beam profile measurement demonstrated that DLA created a square macro-beam consisting of multiple micro-beams in a uniform distribution. Histological analysis confirmed that the DLA-assisted laser treatment generated micro-injuries at various skin depths from the epidermal layer to the deep dermal layer (up to 1200 µm) by adjusting the focal depths while DOE showed shallow penetration depths and MLA created non-uniform micro-injury zones. The DLA-assisted picosecond Nd:YAG laser irradiation can provide a potential benefit for pigment removal and skin rejuvenation via uniform and selective laser treatment.

2.
J Biophotonics ; 14(9): e202100129, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34114344

RESUMEN

The current study aims to evaluate the dependence of laser-induced optical breakdown (LIOB) on skin types by using 1064 nm picosecond laser with micro-lens arrays (MLA) and diffractive optical elements (DOE). Both black and white skin tissues were examined to comparatively assess the LIOB effects in the skin in terms of laser-induced vacuolization. The black skin irradiated at 3.0 J/cm2 demonstrated that MLA yielded a deeper distribution (180-400 µm) of laser-induced vacuoles with a size of 67 µm, compared to DOE (180-280 µm; 40 µm in size). However, the white skin presented that MLA created larger vacuoles (134 µm in size) in a smaller number at deeper distributions (125-700 µm) than MLA with the black skin. DOE generated no laser-induced vacuolization in the white skin. The white skin tissue with inherent higher scattering could be responsible for deeper vacuolization after the picosecond laser treatment. Further investigations are expected to determine the optimal treatment conditions for various skin types.


Asunto(s)
Láseres de Estado Sólido , Lentes , Terapia por Luz de Baja Intensidad , Luz , Piel
3.
Biomed Opt Express ; 11(12): 7286-7298, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408996

RESUMEN

The current study aims to investigate the effects of micro-lens arrays (MLA) and diffractive optical elements (DOE) on skin tissue via intra-dermal laser-induced optical breakdown (LIOB) after irradiation of 1064-nm picosecond laser light at high energy settings. Irradiation with MLA and DOE was tested on dimming paper, tissue-mimicking phantom, and dark pigmented porcine skin to quantitatively compare distributions of micro-beams, micro-bubbles, and laser-induced vacuoles in the skin. DOE yielded more uniform distributions of the micro-beams on the paper and laser-induced micro-bubbles in the phantom, compared to MLA. The ex vivo skin test confirmed that the DOE-assisted irradiation accompanied more homogeneous generation of the micro-beams on the tissue surface (deviation of ≤ 3%) and a high density of small laser-induced vacuoles (∼78 µm) in the dermis than the MLA-assisted irradiation (deviation of ∼26% and ∼163 µm). The DOE-assisted picosecond laser irradiation may help to achieve deep and uniformly-generated vacuolization under the basal membrane after intra-dermal LIOB for effective fractional skin treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA