Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Acta Neuropathol ; 145(1): 1-12, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469115

RESUMEN

Tuberous sclerosis complex (TSC) is a neurogenetic disorder leading to epilepsy, developmental delay, and neurobehavioral dysfunction. The syndrome is caused by pathogenic variants in TSC1 (coding for hamartin) or TSC2 (coding for tuberin). Recently, we reported a progressive frontotemporal dementia-like clinical syndrome in a patient with a mutation in TSC1, but the neuropathological changes seen in adults with TSC with or without dementia have yet to be systematically explored. Here, we examined neuropathological findings in adults with TSC (n = 11) aged 30-58 years and compared them to age-matched patients with epilepsy unrelated to TSC (n = 9) and non-neurological controls (n = 10). In 3 of 11 subjects with TSC, we observed a neurofibrillary tangle-predominant "TSC tauopathy" not seen in epilepsy or non-neurological controls. This tauopathy was observed in the absence of pathological amyloid beta, TDP-43, or alpha-synuclein deposition. The neurofibrillary tangles in TSC tauopathy showed a unique pattern of post-translational modifications, with apparent differences between TSC1 and TSC2 mutation carriers. Tau acetylation (K274, K343) was prominent in both TSC1 and TSC2, whereas tau phosphorylation at a common phospho-epitope (S202) was observed only in TSC2. TSC tauopathy was observed in selected neocortical, limbic, subcortical, and brainstem sites and showed a 3-repeat greater than 4-repeat tau isoform pattern in both TSC1 and TSC2 mutation carriers, but no tangles were immunolabeled with MC1 or p62 antibodies. The findings suggest that individuals with TSC are at risk for a unique tauopathy in mid-life and that tauopathy pathogenesis may involve TSC1, TSC2, and related molecular pathways.


Asunto(s)
Epilepsia , Tauopatías , Esclerosis Tuberosa , Adulto , Humanos , Proteínas Supresoras de Tumor/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Péptidos beta-Amiloides/genética , Mutación/genética , Epilepsia/genética , Tauopatías/genética
2.
Ann Neurol ; 89(2): 389-401, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33219525

RESUMEN

OBJECTIVE: The purpose of this study was to compare the diagnostic accuracy of antemortem 11 C-Pittsburgh compound B (PIB) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) versus autopsy diagnosis in a heterogenous sample of patients. METHODS: One hundred one participants underwent PIB and FDG PET during life and neuropathological assessment. PET scans were visually interpreted by 3 raters blinded to clinical information. PIB PET was rated as positive or negative for cortical retention, whereas FDG scans were read as showing an Alzheimer disease (AD) or non-AD pattern. Neuropathological diagnoses were assigned using research criteria. Majority visual reads were compared to intermediate-high AD neuropathological change (ADNC). RESULTS: One hundred one participants were included (mean age = 67.2 years, 41 females, Mini-Mental State Examination = 21.9, PET-to-autopsy interval = 4.4 years). At autopsy, 32 patients showed primary AD, 56 showed non-AD neuropathology (primarily frontotemporal lobar degeneration [FTLD]), and 13 showed mixed AD/FTLD pathology. PIB showed higher sensitivity than FDG for detecting intermediate-high ADNC (96%, 95% confidence interval [CI] = 89-100% vs 80%, 95% CI = 68-92%, p = 0.02), but equivalent specificity (86%, 95% CI = 76-95% vs 84%, 95% CI = 74-93%, p = 0.80). In patients with congruent PIB and FDG reads (77/101), combined sensitivity was 97% (95% CI = 92-100%) and specificity was 98% (95% CI = 93-100%). Nine of 24 patients with incongruent reads were found to have co-occurrence of AD and non-AD pathologies. INTERPRETATION: In our sample enriched for younger onset cognitive impairment, PIB-PET had higher sensitivity than FDG-PET for intermediate-high ADNC, with similar specificity. When both modalities are congruent, sensitivity and specificity approach 100%, whereas mixed pathology should be considered when PIB and FDG are incongruent. ANN NEUROL 2021;89:389-401.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Demencia Frontotemporal/diagnóstico por imagen , Placa Amiloide/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tiazoles , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Autopsia , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al ADN/metabolismo , Femenino , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Pick/diagnóstico por imagen , Enfermedad de Pick/metabolismo , Enfermedad de Pick/patología , Placa Amiloide/metabolismo , Placa Amiloide/psicología , Sensibilidad y Especificidad , Proteínas tau/metabolismo
3.
Cereb Cortex ; 30(10): 5387-5399, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32500143

RESUMEN

Each neurodegenerative syndrome reflects a stereotyped pattern of cellular, regional, and large-scale brain network degeneration. In behavioral variant of frontotemporal dementia (bvFTD), a disorder of social-emotional function, von Economo neurons (VENs), and fork cells are among the initial neuronal targets. These large layer 5 projection neurons are concentrated in the anterior cingulate and frontoinsular (FI) cortices, regions that anchor the salience network, a large-scale system linked to social-emotional function. Here, we studied patients with bvFTD, amyotrophic lateral sclerosis (ALS), or both, given that these syndromes share common pathobiological and genetic factors. Our goal was to determine how neuron type-specific TAR DNA-binding protein of 43 kDa (TDP-43) pathobiology relates to atrophy in specific brain structures and to loss of emotional empathy, a cardinal feature of bvFTD. We combined questionnaire-based empathy assessments, in vivo structural MR imaging, and quantitative histopathological data from 16 patients across the bvFTD/ALS spectrum. We show that TDP-43 pathobiology within right FI VENs and fork cells is associated with salience network atrophy spanning insular, medial frontal, and thalamic regions. Gray matter degeneration within these structures mediated loss of emotional empathy, suggesting a chain of influence linking the cellular, regional/network, and behavioral levels in producing signature bvFTD clinical features.


Asunto(s)
Encéfalo/patología , Empatía , Demencia Frontotemporal/patología , Demencia Frontotemporal/psicología , Neuronas/patología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/psicología , Atrofia , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Pruebas Neuropsicológicas
4.
Acta Neuropathol ; 139(1): 27-43, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31542807

RESUMEN

Common neurodegenerative diseases feature progressive accumulation of disease-specific protein aggregates in selectively vulnerable brain regions. Increasing experimental evidence suggests that misfolded disease proteins exhibit prion-like properties, including the ability to seed corruptive templating and self-propagation along axons. Direct evidence for transneuronal spread in patients, however, remains limited. To test predictions made by the transneuronal spread hypothesis in human tissues, we asked whether tau deposition within axons of the corticospinal and corticopontine pathways can be predicted based on clinical syndromes and cortical atrophy patterns seen in frontotemporal lobar degeneration (FTLD). Sixteen patients with Pick's disease, 21 with corticobasal degeneration, and 3 with FTLD-MAPT were included, spanning a range of clinical syndromes across the frontotemporal dementia (FTD) spectrum. Cortical involvement was measured using a neurodegeneration score, a tau score, and a composite score based on semiquantitative ratings and complemented by an MRI-based cortical atrophy W-map based on antemortem imaging. Midbrain cerebral peduncle and pontine base descending fibers were divided into three subregions, representing prefrontopontine, corticospinal, and parieto-temporo-occipital fiber pathways. Tau area fraction was calculated in each subregion and related to clinical syndrome and cortical measures. Within each clinical syndrome, there were predicted relationships between cortical atrophy patterns and axonal tau deposition in midbrain cerebral peduncle and pontine base. Between syndromes, contrasting and predictable patterns of brainstem axonal tau deposition emerged, with, for example, greater tau in prefrontopontine fibers in behavioral variant FTD and in corticospinal fibers in corticobasal syndrome. Finally, semiquantitative and quantitative cortical degeneration scores predicted brainstem axonal tau deposition based on anatomical principles. Taken together, these findings provide important human evidence in support of axonal tau spreading in patients with specific forms of tau-related neurodegeneration.


Asunto(s)
Encéfalo/patología , Demencia Frontotemporal/patología , Vías Nerviosas/patología , Tractos Piramidales/patología , Proteínas tau/metabolismo , Anciano , Atrofia/metabolismo , Atrofia/patología , Encéfalo/metabolismo , Femenino , Demencia Frontotemporal/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/metabolismo , Tractos Piramidales/metabolismo
5.
Brain ; 142(7): 2068-2081, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31081015

RESUMEN

Neurodegenerative dementia syndromes are characterized by spreading of pathological protein deposition along syndrome-specific neural networks. Structural and functional MRI measures can assess the integrity of these networks and have been proposed as biomarkers of disease progression for clinical trials. The relationship between in vivo imaging measures and pathological features, at the single subject level, remains largely unknown. Patient-specific maps of atrophy and seed-based intrinsic connectivity disruption, as compared to normal controls, were obtained for 27 patients subsequently diagnosed with progressive supranuclear palsy (n = 16, seven males, age at death 68.9 ± 6.0 years, imaging-to-pathology interval = 670.2 ± 425.1 days) or corticobasal degeneration (n = 11, two males, age at death 66.7 ± 5.4 years, imaging-to-pathology interval = 696.2 ± 482.2 days). A linear mixed effect model with crossed random effects was used to test regional and single-subject level associations between post-mortem regional measures of neurodegeneration and tau inclusion burden, on the one hand, and regional volume loss and seed-based intrinsic connectivity reduction, on the other. A significant association was found between tau inclusion burden and in vivo volume loss, at the regional level and independent of neurodegeneration severity, in both progressive supranuclear palsy [n = 340 regions; beta 0.036; 95% confidence interval (CI): 0.001, 0.072; P = 0.046] and corticobasal degeneration (n = 215 regions; beta 0.044; 95% CI: 0.009, 0.079; P = 0.013). We also found a significant association between post-mortem neurodegeneration and in vivo volume loss in both progressive supranuclear palsy (n = 340 regions; beta 0.155; 95% CI: 0.061, 0.248; P = 0.001) and corticobasal degeneration (n = 215 regions; beta 0.277; 95% CI: 0.104, 0.450; P = 0.002). We found a significant association between regional neurodegeneration and intrinsic connectivity dysfunction in corticobasal degeneration (n = 215 regions; beta 0.074; 95% CI: 0.005, 0.143; P = 0.035), but no other associations between post-mortem measures of tauopathy and intrinsic connectivity dysfunction reached statistical significance. Our data suggest that in vivo structural imaging measures reflect independent contributions from neurodegeneration and tau burden in progressive supranuclear palsy and corticobasal degeneration. Seed-based measures of intrinsic connectivity dysfunction showed less reliable predictive value when used as in vivo biomarkers of tauopathy. The findings provide important guidance for the use of imaging biomarkers as indirect in vivo assays of microscopic pathology.


Asunto(s)
Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Anciano , Atrofia/patología , Ganglios Basales/patología , Biomarcadores/metabolismo , Corteza Cerebral/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Neuroimagen , Parálisis Supranuclear Progresiva/enfermería , Parálisis Supranuclear Progresiva/patología
6.
Acta Neuropathol ; 137(1): 27-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30511086

RESUMEN

TAR DNA-binding protein 43 (TDP-43) aggregation is the most common pathological hallmark in frontotemporal dementia (FTD) and characterizes nearly all patients with motor neuron disease (MND). The earliest stages of TDP-43 pathobiology are not well-characterized, and whether neurodegeneration results from TDP-43 loss-of-function or aggregation remains unclear. In the behavioral variant of FTD (bvFTD), patients undergo selective dropout of von Economo neurons (VENs) and fork cells within the frontoinsular (FI) and anterior cingulate cortices. Here, we examined TDP-43 pathobiology within these vulnerable neurons in the FI across a clinical spectrum including 17 patients with sporadic bvFTD, MND, or both. In an exploratory analysis based on our initial observations, we further assessed ten patients with C9orf72-associated bvFTD/MND. VENs and fork cells showed early, disproportionate TDP-43 aggregation that correlated with anatomical and clinical severity, including loss of emotional empathy. The presence of a TDP-43 inclusion was associated with striking nuclear and somatodendritic atrophy. An intriguing minority of neurons lacked detectable nuclear TDP-43 despite the apparent absence of a cytoplasmic TDP-43 inclusion. These cells showed neuronal atrophy comparable to inclusion-bearing neurons, suggesting that the loss of nuclear TDP-43 function promotes neurodegeneration, even when TDP-43 aggregation is inconspicuous or absent.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Neuronas/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Proteínas de Unión al ADN/genética , Femenino , Humanos , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Neuronas/patología , Enfermedad de Pick/patología
7.
Brain ; 140(12): 3329-3345, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053860

RESUMEN

Accurately predicting the underlying neuropathological diagnosis in patients with behavioural variant frontotemporal dementia (bvFTD) poses a daunting challenge for clinicians but will be critical for the success of disease-modifying therapies. We sought to improve pathological prediction by exploring clinicopathological correlations in a large bvFTD cohort. Among 438 patients in whom bvFTD was either the top or an alternative possible clinical diagnosis, 117 had available autopsy data, including 98 with a primary pathological diagnosis of frontotemporal lobar degeneration (FTLD), 15 with Alzheimer's disease, and four with amyotrophic lateral sclerosis who lacked neurodegenerative disease-related pathology outside of the motor system. Patients with FTLD were distributed between FTLD-tau (34 patients: 10 corticobasal degeneration, nine progressive supranuclear palsy, eight Pick's disease, three frontotemporal dementia with parkinsonism associated with chromosome 17, three unclassifiable tauopathy, and one argyrophilic grain disease); FTLD-TDP (55 patients: nine type A including one with motor neuron disease, 27 type B including 21 with motor neuron disease, eight type C with right temporal lobe presentations, and 11 unclassifiable including eight with motor neuron disease), FTLD-FUS (eight patients), and one patient with FTLD-ubiquitin proteasome system positive inclusions (FTLD-UPS) that stained negatively for tau, TDP-43, and FUS. Alzheimer's disease was uncommon (6%) among patients whose only top diagnosis during follow-up was bvFTD. Seventy-nine per cent of FTLD-tau, 86% of FTLD-TDP, and 88% of FTLD-FUS met at least 'possible' bvFTD diagnostic criteria at first presentation. The frequency of the six core bvFTD diagnostic features was similar in FTLD-tau and FTLD-TDP, suggesting that these features alone cannot be used to separate patients by major molecular class. Voxel-based morphometry revealed that nearly all pathological subgroups and even individual patients share atrophy in anterior cingulate, frontoinsula, striatum, and amygdala, indicating that degeneration of these regions is intimately linked to the behavioural syndrome produced by these diverse aetiologies. In addition to these unifying features, symptom profiles also differed among pathological subtypes, suggesting distinct anatomical vulnerabilities and informing a clinician's prediction of pathological diagnosis. Data-driven classification into one of the 10 most common pathological diagnoses was most accurate (up to 60.2%) when using a combination of known predictive factors (genetic mutations, motor features, or striking atrophy patterns) and the results of a discriminant function analysis that incorporated clinical, neuroimaging, and neuropsychological data.


Asunto(s)
Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/patología , Encéfalo/patología , Demencia Frontotemporal/patología , Enfermedad de Pick/patología , Parálisis Supranuclear Progresiva/patología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/psicología , Autopsia , Encéfalo/diagnóstico por imagen , Femenino , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/psicología , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/psicología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Enfermedad de Pick/diagnóstico por imagen , Enfermedad de Pick/psicología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/psicología
9.
J Neurol ; 265(12): 2960-2971, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30324308

RESUMEN

OBJECTIVES: To determine the clinical, anatomical, genetic and pathological features of dual frontotemporal lobar degeneration (FTLD) pathology: FTLD-tau and FTLD-TDP-43 in a large clinicopathological cohort. METHODS: We selected subjects with mixed FTLD-TDP and FTLD-tau from 247 FTLD cases from the University of California, San Francisco, Neurodegenerative Disease Brain Bank collected between 2000 and 2016 and compared their clinical, anatomical, genetic, imaging and pathological signatures with those of subjects with pure FTLD. RESULTS: We found nine cases (3.6%) with prominent FTLD-TDP and FTLD-tau. Six cases were sporadic, whereas one case had a C9ORF72 expansion, another had a TARDBP A90V variant, and the other had an MAPT p.A152T variant. The subtypes of FTLD-TDP and FTLD-tau varied. Mixed FTLD cases were older and tended to show a higher burden of Alzheimer disease pathology (3/9, 33%). The neuroimaging signature of mixed cases, in general, included more widespread atrophy than that of pure groups. Specifically, cases of mixed corticobasal degeneration (CBD) with FTLD-TDP showed more prominent asymmetric left-sided atrophy than did those of pure CBD. However, the clinical phenotype of mixed cases was similar to that seen in pure FTLD. CONCLUSIONS: Although patients with mixed FTLD-TDP and FTLD-tau are rare, in-depth clinical, pathological and genetic investigations may shed light on the genetic and biochemical pathways that cause the accumulation of multiple proteinaceous inclusions and inform therapeutic targets that may be beneficial to each one of these abnormal protein misfoldings.


Asunto(s)
Encéfalo/patología , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Tauopatías/genética , Tauopatías/patología , Anciano , Anciano de 80 o más Años , Atrofia , Encéfalo/diagnóstico por imagen , Proteína C9orf72/genética , Proteínas de Unión al ADN/genética , Femenino , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tauopatías/diagnóstico por imagen , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA