Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792088

RESUMEN

Interleukin receptor-associated kinase (IRAK) proteins are pivotal in interleukin-1 and Toll-like receptor-mediated signaling pathways. They play essential roles in innate immunity and inflammation. This review analyzes and discusses the physiological functions of IRAK1 and its associated diseases. IRAK1 is involved in a wide range of diseases such as dry eye, which highlights its potential as a therapeutic target under various conditions. Various IRAK1 inhibitors, including Pacritinib and Rosoxacin, show therapeutic potential against malignancies and inflammatory diseases. The covalent IRAK1 inhibitor JH-X-119-01 shows promise in B-cell lymphomas, emphasizing the significance of covalent bonds in its activity. Additionally, the emergence of selective IRAK1 degraders, such as JNJ-101, provides a novel strategy by targeting the scaffolding function of IRAK1. Thus, the evolving landscape of IRAK1-targeted approaches provides promising avenues for increasingly safe and effective therapeutic interventions for various diseases.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Humanos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
2.
Front Immunol ; 14: 1198905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111581

RESUMEN

Creeping fat (CrF) is an extraintestinal manifestation observed in patients with Crohn's disease (CD). It is characterized by the accumulation of mesenteric adipose tissue (MAT) that wraps around the intestinal wall. Although the role of CrF in CD is still debated, multiple studies have highlighted a correlation between CrF and inflammation, as well as fibrostenosais of the intestine, which contributes to the worsening of CD symptoms. However, the mechanism underlying the potential role of CrF in the development of Crohn's fibrosis remains an enigma. This study aimed to analyze CrF comprehensively using single-cell RNA sequencing analysis. The data was compared with transcriptomic data from adipose tissue in other disease conditions, such as ulcerative colitis, lymphedema, and obesity. Our analysis classified two lineages of preadipocyte (PAC) clusters responsible for adipogenesis and fibrosis in CrF. Committed PACs in CrF showed increased cytokine expression in response to bacterial stimuli, potentially worsening inflammation in patients with CD. We also observed an increase in fibrotic activity in PAC clusters in CrF. Co-analyzing the data from patients with lymphedema, we found that pro-fibrotic PACs featured upregulated pentraxin-3 expression, suggesting a potential target for the treatment of fibrosis in CrF. Furthermore, PACs in CrF exhibited a distinct increase in cell-to-cell communication via cytokines related to inflammation and fibrosis, such as CCL, LIGHT, PDGF, MIF, and SEMA3. Interestingly, these interactions also increased in PACs of the lymphedema, whereas the increased MIF signal of PACs was found to be a distinct characteristic of CrF. In immune cell clusters in CrF, we observed high immune activity of pro-inflammatory macrophages, antigen-presenting macrophages, B cells, and IgG+ plasma cells. Finally, we have demonstrated elevated IgG+ plasma cell infiltration and increased pentraxin-3 protein levels in the fibrotic regions of CrF in CD patients when compared to MAT from both UC patients and healthy individuals. These findings provide new insights into the transcriptomic features related to the inflammation of cells in CrF and suggest potential targets for attenuating fibrosis in CD.


Asunto(s)
Enfermedad de Crohn , Linfedema , Humanos , Adipogénesis , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Fibrosis , Inmunoglobulina G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA