Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Exp Bot ; 73(17): 5863-5873, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35246975

RESUMEN

Physiological effects mediated by melatonin are attributable to its potent antioxidant activity as well as its role as a signaling molecule in inducing a vast array of melatonin-mediated genes. Here, we propose melatonin as a signaling molecule essential for protein quality control (PQC) in plants. PQC occurs by the coordinated activities of three systems: the chaperone network, autophagy, and the ubiquitin-proteasome system. With regard to the melatonin-mediated chaperone pathway, melatonin increases thermotolerance by induction of heat shock proteins and confers endoplasmic reticulum stress tolerance by increasing endoplasmic reticulum chaperone proteins. In chloroplasts, melatonin-induced chaperones, including Clps and CpHSP70s, play key roles in the PQC of chloroplast-localized proteins, such as Lhcb1, Lhcb4, and RBCL, during growth. Melatonin regulates PQC by autophagy processes, in which melatonin induces many autophagy (ATG) genes and autophagosome formation under stress conditions. Finally, melatonin-mediated plant stress tolerance is associated with up-regulation of stress-induced transcription factors, which are regulated by the ubiquitin-proteasome system. In this review, we propose that melatonin plays a pivotal role in PQC and consequently functions as a pleiotropic molecule under non-stress and adverse conditions in plants.


Asunto(s)
Melatonina , Complejo de la Endopetidasa Proteasomal , Antioxidantes , Autofagia , Proteínas de Choque Térmico , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción , Ubiquitina/metabolismo
2.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670642

RESUMEN

We investigated the relationship between the blue-light photoreceptor cryptochrome (CRY) and melatonin biosynthesis by generating RNA interference (RNAi) transgenic rice plants that suppress the cryptochrome 1b gene (CRY1b). The resulting CRY1b RNAi rice lines expressed less CRY1b mRNA, but not CRY1a or CRY2 mRNA, suggesting that the suppression is specific to CRY1b. The growth of CRY1b RNAi rice seedlings was enhanced under blue light compared to wild-type growth, providing phenotypic evidence for impaired CRY function. When these CRY1b RNAi rice plants were challenged with cadmium to induce melatonin, wild-type plants produced 100 ng/g fresh weight (FW) melatonin, whereas CRY1b RNAi lines produced 60 ng/g FW melatonin on average, indicating that melatonin biosynthesis requires the CRY photoreceptor. Due to possible feedback regulation, the expression of melatonin biosynthesis genes such as T5H, SNAT1, SNAT2, and COMT was elevated in the CRY1b RNAi lines compared to the wild-type plants. In addition, laminar angles decreased in the CRY1b RNAi lines via the suppression of brassinosteroid (BR) biosynthesis genes such as DWARF. The main cause of the BR decrease in the CRY1b RNAi lines seems to be the suppression of CRY rather than decreased melatonin because the melatonin decrease suppressed DWARF4 rather than DWARF.


Asunto(s)
Vías Biosintéticas/genética , Brasinoesteroides/biosíntesis , Criptocromos/genética , Genes de Plantas , Melatonina/biosíntesis , Oryza/genética , Tolerancia a la Sal/genética , Vías Biosintéticas/efectos de los fármacos , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/efectos de los fármacos , Fenotipo , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/genética , Serotonina/metabolismo , Cloruro de Sodio/farmacología
3.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635310

RESUMEN

Melatonin has long been recognized as a positive signaling molecule and potent antioxidant in plants, which alleviates damage caused by adverse conditions such as salt, cold, and heat stress. In this study, we found a paradoxical role for melatonin in abiotic stress responses. Suppression of the serotonin N-acetyltransferase 2 (snat2) gene encoding the penultimate enzyme in melatonin biosynthesis led to simultaneous decreases in both melatonin and brassinosteroid (BR) levels, causing a semi-dwarf with erect leaf phenotype, typical of BR deficiency. Here, we further characterized snat2 rice in terms of grain morphology and abiotic stress tolerance, to determine whether snat2 rice exhibited characteristics similar to those of BR-deficient rice. As expected, the snat2 rice exhibited tolerance to multiple stress conditions including cadmium, salt, cold, and heat, as evidenced by decreased malondialdehyde (MDA) levels and increased chlorophyll levels, in contrast with SNAT2 overexpression lines, which were less tolerant to stress than wild type plants. In addition, the length and width of grain from snat2 plants were reduced relative to the wild type, which is reminiscent of BR deficiency in rice. Other melatonin-deficient mutant rice lines with suppressed BR synthesis (i.e., comt and t5h) also showed tolerance to salt and heat stress, whereas melatonin-deficient rice seedlings without decreased BR levels (i.e., tdc) failed to exhibit increased stress tolerance, suggesting that stress tolerance was increased not by melatonin deficiency alone, but by a melatonin deficiency-mediated decrease in BR.


Asunto(s)
Adaptación Biológica/genética , Brasinoesteroides/biosíntesis , Melatonina/deficiencia , Oryza/genética , Oryza/metabolismo , Estrés Fisiológico , Cadmio/toxicidad , Tolerancia a Medicamentos , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Melatonina/biosíntesis , Fenotipo , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Plantones/genética , Plantones/metabolismo
4.
J Pineal Res ; 65(2): e12495, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29607549

RESUMEN

Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis catalyzing the conversion of serotonin into N-acetylserotonin. In plants, SNAT is encoded by 2 isogenes of which SNAT1 is constitutively expressed and its overexpression confers increased yield in rice. However, the role of SNAT2 remains to be clarified. In contrast to SNAT1, the diurnal rhythm of SNAT2 mRNA expression peaks at night. In this study, transgenic rice plants in which SNAT2 expression were suppressed by RNAi technology showed a decrease in melatonin and a dwarf phenotype with erect leaves, reminiscent of brassinosteroids (BR)-deficient mutants. Of note, the dwarf phenotype was dependent on the presence of dark, suggesting that melatonin is involved in dark growth (skotomorphogenesis). In support of this suggestion, SNAT2 RNAi lines exhibited photomorphogenic phenotypes such as inhibition of internodes and increased expression of light-inducible CAB genes in the dark. The causative gene for the melatonin-mediated BR biosynthetic gene was DWARF4, a rate-limiting BR biosynthetic gene. Exogenous melatonin treatment induced several BR biosynthetic genes, including DWARF4, D11, and RAVL1. As expected from the erect leaves, the SNAT2 RNAi lines produced less BR than the wild type. Our results show for the first time that melatonin is a positive regulator of dark growth or shade outgrowth by regulating BR biosynthesis in plants.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/biosíntesis , Brasinoesteroides/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Melatonina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/biosíntesis , N-Acetiltransferasa de Arilalquilamina/genética , Melatonina/genética , Oryza/genética , Proteínas de Plantas/genética
5.
J Pineal Res ; 65(3): e12512, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29851162

RESUMEN

The plant melatonin biosynthetic pathway has been well characterized, but inhibitors of melatonin synthesis have not been well studied. Here, we found that flavonoids potently inhibited plant melatonin synthesis. For example, flavonoids including morin and myricetin significantly inhibited purified, recombinant sheep serotonin N-acetyltransferase (SNAT). Flavonoids also dose-dependently and potently inhibited purified rice SNAT1 and SNAT2. Thus, myricetin (100 µmol/L) reduced rice SNAT1 and SNAT2 activity 7- and 10-fold, respectively, and also strongly inhibited the N-acetylserotonin methyltransferase activity of purified, recombinant rice caffeic acid O-methyltransferase. To explore the in vivo effects, rice leaves were treated with flavonoids and then cadmium. Flavonoid-treated leaves had lower melatonin levels than the untreated control. To explore the direct roles of flavonoids in melatonin biosynthesis, we first functionally characterized a putative rice flavonol synthase (FLS) in vitro and generated flavonoid-rich transgenic rice plants that overexpressed FLS. Such plants produced more flavonoids but less melatonin than the wild-type, which suggests that flavonoids indeed inhibit plant melatonin biosynthesis.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/metabolismo , Flavonoides/farmacología , Melatonina/biosíntesis , Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Ovinos/metabolismo , Animales , N-Acetiltransferasa de Arilalquilamina/genética , Melatonina/genética , Oryza/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Ovinos/genética
6.
J Pineal Res ; 58(4): 470-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25783167

RESUMEN

We investigated the expression patterns of genes involved in melatonin synthesis and degradation in rice leaves upon cadmium (Cd) treatment and the subcellular localization sites of melatonin 2-hydroxylase (M2H) proteins. The Cd-induced synthesis of melatonin coincided with the increased expression of melatonin biosynthetic genes including tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), and N-acetylserotonin methyltransferase (ASMT). However, the expression of serotonin N-acetyltransferase (SNAT), the penultimate gene in melatonin biosynthesis, was downregulated, suggesting that melatonin synthesis was counter-regulated by SNAT. Notably, the induction of melatonin biosynthetic gene expression was coupled with the induction of four M2H genes involved in melatonin degradation, which suggests that genes for melatonin synthesis and degradation are coordinately regulated. The induced M2H gene expression was correlated with enhanced M2H enzyme activity. Three of the M2H proteins were localized to the cytoplasm and one M2H protein was localized to chloroplasts, indicating that melatonin degradation occurs both in the cytoplasm and in chloroplasts. The biological activity of 2-hydroxymelatonin in the induction of the plant defense gene expression was 50% less than that of melatonin, which indicates that 2-hydroxymelatonin may be a metabolite of melatonin. Overall, our data demonstrate that melatonin synthesis occurs in parallel with melatonin degradation in both chloroplasts and cytoplasm, and the resulting melatonin metabolite 2-hydroxymelatonin also acts as a signaling molecule for defense gene induction.


Asunto(s)
Cadmio/farmacología , Melatonina/metabolismo , Oryza/efectos de los fármacos , Oryza/metabolismo , Hojas de la Planta/metabolismo , Oryza/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética
7.
Plant Cell Rep ; 34(2): 265-75, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410250

RESUMEN

KEY MESSAGE: A plant-derived 0.3 kb constitutive promoter was obtained from AtTCTP expression analysis, and successfully applied to the expression of a selectable marker gene for production of transgenic creeping bentgrass plants. The isolation and use of an efficient promoter is essential to develop a vector system for efficient genetic transformation of plants, and constitutive promoters are particularly useful for the expression of selectable marker genes. In this study, we characterized a small size of the constitutive promoter from the expression analysis of Arabidopsis thaliana translationally controlled tumor protein (AtTCTP) gene. Histochemical and fluorometric GUS analyses revealed that a 303 bp upstream region from the start codon of the AtTCTP gene showed strong GUS expression throughout all plant tissues, which is approximately 55 % GUS activity compared with the cauliflower mosaic virus 35S promoter (35Spro). To examine the possible application of this promoter for the development of genetically engineered crops, we introduced pCAMBIA3301 vector harboring the 0.3 kb promoter of AtTCTP (0.3kbpro) that was fused to the herbicide resistance BAR gene (0.3kb pro ::BAR) into creeping bentgrass. Our transformation results demonstrate that transgenic creeping bentgrass plants with herbicide resistance were successfully produced using 0.3kb pro ::BAR as a selectable marker. Northern blot analysis revealed that the transgenic plants with 0.3kb pro ::BAR showed reduced but comparable expression levels of BAR to those with 35S pro ::BAR. Moreover, the transcription activity of the 0.3 kb promoter could be increased by the fusion of an enhancer sequence. These results indicate that the 0.3 kb AtTCTP promoter can be used as a plant-derived constitutive promoter for the expression of selectable marker genes, which facilitates its use as an alternative to the 35S promoter for developing genetically engineered crops.


Asunto(s)
Agrostis/fisiología , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Asociadas a Microtúbulos/genética , Regiones Promotoras Genéticas/genética , Agrostis/genética , Proteínas de Arabidopsis/metabolismo , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Caulimovirus/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Vectores Genéticos , Glucuronidasa , Resistencia a los Herbicidas , Proteínas Asociadas a Microtúbulos/metabolismo , Especificidad de Órganos , Plantas Modificadas Genéticamente , Transformación Genética , Proteína Tumoral Controlada Traslacionalmente 1
8.
Planta ; 236(4): 1135-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22644765

RESUMEN

Phytochrome A (phyA) in higher plants is known to function as a far-red/shade light-sensing photoreceptor in suppressing shade avoidance responses (SARs) to shade stress. In this paper, the Avena PHYA gene was introduced into creeping bentgrass (Agrostis stolonifera L.) and zoysiagrass (Zoysia japonica Steud.) to improve turf quality by suppressing the SARs. In addition to wild-type PHYA, a hyperactive mutant gene (S599A-PHYA), in which a phosphorylation site involved in light-signal attenuation was removed, was also transformed into the turfgrasses. Phenotypic traits of the transgenic plants were compared to assess the suppression of SARs under a simulated shade condition and outdoor field conditions after three growth seasons. Under the shade condition, the S599A-PhyA transgenic creeping bentgrass plants showed shade avoidance-suppressing phenotypes with a 45 % shorter leaf lengths, 24 % shorter internode lengths, and twofold increases in chlorophyll concentrations when compared with control plants. Transgenic zoysiagrass plants overexpressing S599A-PHYA also showed shade-tolerant phenotypes under the shade condition with reductions in leaf length (15 %), internode length (30 %), leaf length/width ratio (19 %) and leaf area (22 %), as well as increases in chlorophyll contents (19 %) and runner lengths (30 %) compared to control plants. The phenotypes of transgenic zoysiagrass were also investigated in dense field habitats, and the transgenic turfgrass exhibited shade-tolerant phenotypes similar to those observed under laboratory shade conditions. Therefore, the present study suggests that the hyperactive phyA is effective for the development of shade-tolerant plants, and that the shade tolerance nature is sustained under field conditions.


Asunto(s)
Agrostis/genética , Agrostis/fisiología , Fitocromo A/genética , Poaceae/fisiología , Agrostis/crecimiento & desarrollo , Agrostis/efectos de la radiación , Southern Blotting , Clorofila/análisis , Clorofila/metabolismo , Transporte de Electrón , Fluorescencia , Expresión Génica , Luz , Microscopía Electrónica de Rastreo , Mutación , Fenotipo , Fosforilación , Fitocromo A/fisiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Haz Vascular de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Poaceae/genética , Poaceae/crecimiento & desarrollo , Poaceae/efectos de la radiación
9.
Plant Cell Rep ; 31(9): 1677-86, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22569964

RESUMEN

UNLABELLED: An Arabidopsis ß-glucosidase, AtBG1 is known to hydrolyze glucose-conjugated, biologically inactive abscisic acid (ABA) to produce active ABA, which increases the level of ABA in plants. Since an increase of ABA in plants confers tolerance against abiotic stress such as drought, we introduced the pCAMBIA3301 vector harboring the AtBG1 gene into creeping bentgrass through Agrobacterium-mediated transformation. After transformation, putative transgenic plants were selected using the BASTA resistance assay at a concentration of 0.8%. Genomic integration of the AtBG1 gene was confirmed by genomic PCR and Southern blot analysis, and gene expression was validated by Northern blot and Western blot analyses. Interestingly, the transgenic bentgrass plants overexpressing AtBG1 had a dwarf phenotype with reduced growth rates when compared to wild-type creeping bentgrass. In addition, the transgenic plants accumulated higher ABA levels and displayed enhanced drought tolerance. These results suggest that the expression of AtBG1 in plants induces the accumulation of higher ABA levels, which results in the formation of dwarf creeping bentgrass and enhances the survival in water-limiting environments. KEY MESSAGE: We used an Arabidopsis ß-glucosidase AtBG1 to engineer a crop with elevated active ABA levels, and developed transgenic creeping bentgrass with enhanced drought tolerance and dwarf phenotype.


Asunto(s)
Agrostis/anatomía & histología , Agrostis/fisiología , Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/genética , Sequías , beta-Glucosidasa/genética , Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Agrostis/genética , Agrostis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Genes de Plantas/genética , Resistencia a los Herbicidas , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Transformación Genética , beta-Glucosidasa/metabolismo
10.
Antioxidants (Basel) ; 11(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624782

RESUMEN

Gibberellic acid (GA) was recently shown to induce melatonin synthesis in rice. Here, we examined whether brassinosteroids (BRs) also induce melatonin synthesis because BRs and GA show redundancy in many functions. Among several plant hormones, exogenous BR treatment induced melatonin synthesis by twofold compared to control treatment, whereas ethylene, 6-benzylaminopurine (BA), and indole-3-acetic acid (IAA) showed negligible effects on melatonin synthesis. Correspondingly, BR treatment also induced a number of melatonin biosynthetic genes in conjunction with the suppression of melatonin catabolic gene expression. Several transgenic rice plants with downregulated BR biosynthesis-related genes, such as DWARF4, DWARF11, and RAV-Like1 (RAVL1), were generated and exhibited decreased melatonin synthesis, indicating that BRs act as endogenous elicitors of melatonin synthesis. Notably, treatment with either GA or BR fully restored melatonin synthesis in the presence of paclobutrazol, a GA biosynthesis inhibitor. Moreover, exogenous BR treatment partially restored melatonin synthesis in both RAVL1 and Gα RNAi transgenic rice plants, whereas GA treatment fully restored melatonin synthesis comparable to wild type in RAVL1 RNAi plants. Taken together, our results highlight a role of BR as an endogenous elicitor of melatonin synthesis in a GA-independent manner in rice plants.

11.
Biomolecules ; 12(2)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35204699

RESUMEN

Melatonin production is induced by many abiotic and biotic stressors; it modulates the levels of many plant hormones and their signaling pathways. This study investigated the effects of plant hormones on melatonin synthesis. Melatonin synthesis in rice seedlings was significantly induced upon exogenous gibberellin 3 (GA3) treatment, while it was severely decreased by GA synthesis inhibitor paclobutrazol. In contrast, abscisic acid (ABA) strongly inhibited melatonin synthesis, whereas its inhibitor norflurazon (NF) induced melatonin synthesis. The observed GA-mediated increase in melatonin was closely associated with elevated expression levels of melatonin biosynthetic genes such as TDC3, T5H, and ASMT1; it was also associated with reduced expression levels of catabolic genes ASDAC and M2H. In a paddy field, the treatment of immature rice seeds with exogenous GA led to enhanced melatonin production in rice seeds; various transgenic rice plants downregulating a GA biosynthesis gene (GA3ox2) and a signaling gene (Gα) showed severely decreased melatonin levels, providing in vivo genetic evidence that GA has a positive effect on melatonin synthesis. This is the first study to report that GA is positively involved in melatonin synthesis in plants; GA treatment can be used to produce melatonin-rich seeds, vegetables, and fruits, which are beneficial for human health.


Asunto(s)
Melatonina , Oryza , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Giberelinas/farmacología , Humanos , Melatonina/metabolismo , Melatonina/farmacología , Oryza/metabolismo
12.
Antioxidants (Basel) ; 11(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009250

RESUMEN

Arylalkylamine N-acetyltransferase (AANAT) is a pivotal enzyme in melatonin biosynthesis that catalyzes the conversion of serotonin to N-acetylserotonin. Homologs of animal AANAT genes are present in animals, but not in plants. An AANAT homolog was found in Chlamydomonas reinhardtii, but not other green algae. The characteristics of C. reinhardtii AANAT (CrAANAT) are unclear. Here, full-length CrAANAT was chemically synthesized and expressed in Escherichia coli. Recombinant CrAANAT exhibited AANAT activity with a Km of 247 µM and Vmax of 325 pmol/min/mg protein with serotonin as the substrate. CrAANAT was localized to the cytoplasm in tobacco leaf cells. Transgenic rice plants overexpressing CrAANAT (CrAANAT-OE) exhibited increased melatonin production. CrAANAT-OE plants showed a longer seed length and larger second leaf angle than wild-type plants, indicative of the involvement of brassinosteroids (BRs). As expected, BR biosynthesis- and signaling-related genes such as D2, DWARF4, DWARF11, and BZR1 were upregulated in CrAANAT-OE plants. Therefore, an increased endogenous melatonin level by ectopic overexpression of CrAANAT seems to be closely associated with BR biosynthesis, thereby influencing seed size.

13.
Biomolecules ; 10(1)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952365

RESUMEN

Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthetic pathway, in which serotonin is converted into N-acetylserotonin (NAS) in plants. To date, two SNAT isogenes with low amino acid sequence homologies have been identified. Their single suppression in rice has been reported, but their double suppression in rice has not yet been attempted. Here, we generated double-suppression transgenic rice (snat1+2) using the RNA interference technique. The snat1+2 exhibited retarded seedling growths in conjunction with severe decreases in melatonin compared to wild-types and single-suppression rice plants (snat1 or snat2). The laminar angle was decreased in the snat1+2 rice compared to that of the wild-types and snat1, but was comparable to that of snat2. The reduced germination speed in the snat1+2 was comparable to that of snat2. Seed-aging testing revealed that snat1 was the most severely deteriorated, followed by snat1+2 and snat2, suggesting that melatonin is positively involved in seed longevity.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/genética , Melatonina/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Semillas/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , Semillas/crecimiento & desarrollo , Semillas/metabolismo
14.
Biomolecules ; 10(4)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235549

RESUMEN

Light is an important factor influencing melatonin synthesis in response to cadmium treatment in rice. However, the effects of light quality on, and the involvement of phytochrome light receptors in, melatonin production have not been explored. In this study, we used light-emitting diodes (LEDs) to investigate the effect of light wavelength on melatonin synthesis, and the role of phytochromes in light-dependent melatonin induction in rice. Upon cadmium treatment, peak melatonin production was observed under combined red and blue (R + B) light, followed by red (R) and blue light (B). However, both far-red (FR) LED light and dark treatment (D) failed to induce melatonin production. Similarly, rice seedlings grown under the R + B treatment showed the highest melatonin synthesis, followed by those grown under B and R. These findings were consistent with the results of our cadmium treatment experiment. To further confirm the effects of light quality on melatonin synthesis, we employed rice photoreceptor mutants lacking functional phytochrome genes. Melatonin induction was most inhibited in the phytochrome A mutant (phyA) followed by the phyB mutant under R + B treatment, whereas phyB produced the least amount of melatonin under R treatment. These results indicate that PhyB is an R light receptor. Expression analyses of genes involved in melatonin biosynthesis clearly demonstrated that tryptophan decarboxylase (TDC) played a key role in phytochrome-mediated melatonin induction when rice seedlings were challenged with cadmium.


Asunto(s)
Luz , Melatonina/biosíntesis , Oryza/metabolismo , Oryza/efectos de la radiación , Fitocromo/metabolismo , Color , Mutación , Oryza/genética , Serotonina/biosíntesis
15.
PLoS One ; 12(10): e0187378, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29084267

RESUMEN

Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress tolerance. In this study, we produced transgenic creeping bentgrass (Agrostis stolonifera L.) overexpressing a BR-inactivating enzyme, Arabidopsis thaliana BR-related acyltransferase 1 (AtBAT1), which is known to catalyze the conversion of BR intermediates to inactive acylated conjugates. After putative transgenic plants were selected using herbicide resistance assay, genomic integration of the AtBAT1 gene was confirmed by genomic PCR and Southern blot analysis, and transgene expression was validated by northern blot analysis. The transgenic creeping bentgrass plants exhibited BR-deficient phenotypes, including reduced plant height with shortened internodes (i.e., semi-dwarf), reduced leaf growth rates with short, wide, and thick architecture, high chlorophyll contents, decreased numbers of vascular bundles, and large lamina joint bending angles (i.e., erect leaves). Subsequent analyses showed that the transgenic plants had significantly reduced amounts of endogenous BR intermediates, including typhasterol, 6-deoxocastasterone, and castasterone. Moreover, the AtBAT1 transgenic plants displayed drought tolerance as well as delayed senescence. Therefore, the results of the present study demonstrate that overexpression of an Arabidopsis BR-inactivating enzyme can reduce the endogenous levels of BRs in creeping bentgrass resulting in BR-deficient phenotypes, indicating that the AtBAT1 gene from a dicot plant is also functional in the monocot crop.


Asunto(s)
Arabidopsis/genética , Esteroides/metabolismo , Transferasas/metabolismo , Transferasas/genética
16.
Mol Cells ; 33(6): 617-26, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22610367

RESUMEN

Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium- and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA- and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin- and calcium-binding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Expresión Génica , Proteínas Asociadas a Microtúbulos/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Estomas de Plantas/fisiología , Ácido Abscísico/farmacología , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/farmacología , Calcio/metabolismo , Deshidratación/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas Asociadas a Microtúbulos/farmacología , Microtúbulos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/crecimiento & desarrollo , Unión Proteica , Estabilidad Proteica , Estrés Fisiológico , Proteína Tumoral Controlada Traslacionalmente 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA