Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 5(8): e1000588, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19662160

RESUMEN

In Saccharomyces cerevisiae, the conserved phosphatase Cdc14 is required for the exit from mitosis. It is anchored on nucleolar chromatin by the Cfi1/Net1 protein until early anaphase, at which time it is released into the nucleoplasm. Two poorly understood, redundant pathways promote Cdc14 release, the FEAR (Cdc fourteen early release) network and the MEN (mitotic exit network). Through the analysis of genetic interactions, we report here a novel requirement for the ubiquitination of histone H2B by the Bre1 ubiquitin ligase in the cell cycle-dependent release of Cdc14 from nucleolar chromatin when the MEN is inactivated. This function for H2B ubiquitination is mediated by its activation of histone H3 methylation on lysines 4 and 79 (meH3K4 and meH3K79) but, surprisingly, is not dependent on the histone deacetylase (HDAC) Sir2, which associates with Cdc14 on nucleolar chromatin as part of the RENT complex. We also observed a defect in Cdc14 release in cells lacking H3 lysine 36 methylation (meH3K36) and in cells lacking an HDAC recruited by this modification. These histone modifications represent previously unappreciated factors required for the accessibility to and/or action on nucleolar chromatin of FEAR network components. The nonredundant role for these modifications in this context contrasts with the notion of a highly combinatorial code by which histone marks act to control biological processes.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Cromatina/genética , Metilación , Proteínas Tirosina Fosfatasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
2.
Elife ; 3: e02439, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24867641

RESUMEN

The epigenetic mechanisms that enable specialized astrocytes to retain neurogenic competence throughout adult life are still poorly understood. Here we show that astrocytes that serve as neural stem cells (NSCs) in the adult mouse subventricular zone (SVZ) express the histone methyltransferase EZH2. This Polycomb repressive factor is required for neurogenesis independent of its role in SVZ NSC proliferation, as Ink4a/Arf-deficiency in Ezh2-deleted SVZ NSCs rescues cell proliferation, but neurogenesis remains defective. Olig2 is a direct target of EZH2, and repression of this bHLH transcription factor is critical for neuronal differentiation. Furthermore, Ezh2 prevents the inappropriate activation of genes associated with non-SVZ neuronal subtypes. In the human brain, SVZ cells including local astroglia also express EZH2, correlating with postnatal neurogenesis. Thus, EZH2 is an epigenetic regulator that distinguishes neurogenic SVZ astrocytes, orchestrating distinct and separable aspects of adult stem cell biology, which has important implications for regenerative medicine and oncogenesis.DOI: http://dx.doi.org/10.7554/eLife.02439.001.


Asunto(s)
Astrocitos/metabolismo , Neurogénesis , Complejo Represivo Polycomb 2/genética , Animales , Astrocitos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Complejo Represivo Polycomb 2/metabolismo
3.
Proc Natl Acad Sci U S A ; 104(42): 16609-14, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17925448

RESUMEN

In Saccharomyces cerevisiae, several nonessential mechanisms including histone variant H2A.Z deposition and transcription-associated histone H3 methylation antagonize the local spread of Sir-dependent silent chromatin into adjacent euchromatic regions. However, it is unclear how and where these factors cooperate. To probe this question, we performed systematic genetic array screens for gene deletions that cause a synthetic growth defect in an htz1Delta mutant but not in an htz1Delta sir3Delta double mutant. Of the four genes identified, three, SET1, SWD1, and SWD3, encode components of the Set1 complex, which catalyzes the methylation of histone H3 on lysine 4 (H3-K4), a highly conserved modification that occurs in the coding sequences of transcribed genes. Using microarray-based transcriptional profiling, we find that H2A.Z and Set1 cooperate to prevent Sir-dependent repression of a large number of genes located across the genome, rather than the local effects reported previously for the individual mechanisms. This global, redundant function appears to be direct: using a DamID chromatin profiling method, we demonstrate ectopic association of Sir3 and Sir4 in htz1Delta set1Delta mutants at loci distant from silent chromatin domains. Antisilencing mechanisms may therefore cooperate to play a considerably broader role in regulating genome-wide transcription than previously thought.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Eucromatina/metabolismo , Genoma Fúngico/genética , N-Metiltransferasa de Histona-Lisina , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba
4.
Proc Natl Acad Sci U S A ; 100(22): 13001-6, 2003 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-14557536

RESUMEN

Although many bacterial pathogens use specialized secretion systems for virulence, no such systems have been described for Mycobacterium tuberculosis, a major pathogen of humans that proliferates in host macrophages. In a screen to identify genes required for virulence of M. tuberculosis, we have discovered three components and two substrates of the first Sec-independent secretion pathway described in M. tuberculosis, which we designate the Snm pathway. Here we demonstrate that the proteins Snm1, -2, and -4 are required for the secretion of ESAT-6 and CFP-10, small proteins previously identified as major T cell antigens. Snm2, a member of the AAA ATPase family, interacts with substrates and with Snm1, another AAA ATPase. We show that M. tuberculosis mutants lacking either the Snm system or these substrates exhibit defects in bacterial growth during the acute phase of a mouse infection and are attenuated for virulence. Strikingly, snm mutants fail to replicate in cultured macrophages and to inhibit macrophage inflammatory responses, two well established activities of wild-type M. tuberculosis bacilli. Thus, the Snm secretion pathway works to subvert normal macrophage responses and is a major determinant of M. tuberculosis virulence.


Asunto(s)
Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/patología , Virulencia/genética , Animales , Células Cultivadas , Secuencia Conservada , Modelos Animales de Enfermedad , Ratones , Modelos Biológicos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Plásmidos , Transporte de Proteínas , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Mol Cell ; 11(1): 261-6, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12535538

RESUMEN

Monoubiquitination of histone H2B is required for methylation of histone H3 on lysine 4 (K4), a modification associated with active chromatin. The identity of the cognate ubiquitin ligase is unknown. We identify Bre1 as an evolutionarily conserved RING finger protein required in vivo for both H2B ubiquitination and H3 K4 methylation. The RING domain of Bre1 is essential for both of these modifications as is Lge1 (Large 1), a protein required for cell size control that copurifies with Bre1. In cells lacking the euchromatin-associated histone variant H2A.Z, BRE1, RAD6, and LGE1 are each essential for cell viability, supporting redundant functions for H2B ubiquitination and H2A substitution in the formation of active chromatin. Notably, analysis of mutants demonstrates a function for Bre1/Lge1-dependent H2B monoubiquitination in the control of cell size.


Asunto(s)
Tamaño de la Célula , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Sustancias Macromoleculares , Metilación , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA