Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410003, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840456

RESUMEN

For the upcycling of waste polyethylene terephthalate (PET), encompassing both colored and fabric PET materials, we investigated the Ir(triNHC)-catalyzed dehydrogenative coupling of PET and methanol, leading to the production of sodium lactate with good yields. We proposed a sustainable method for isolating lactic acid from the catalytic reaction mixture of sodium lactate and regenerating the base using bipolar membrane electrodialysis (BMED). This isolation method demonstrated high effectiveness, achieving isolation of lactic acid while maintaining economic feasibility at $0.10 per kg of lactic acid, and enabling sustainable NaOH regeneration with complete resource circulation. We assessed the recyclability of the catalyst and elucidated the mechanism involving base-mediated depolymerization and catalyst-promoted dehydrogenation, highlighting the importance of triNHC ligands in enhancing catalytic activity.

2.
Chemistry ; 25(56): 12889-12894, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31161642

RESUMEN

Oxo-bridged trimeric chromium acetate clusters [Cr3 O(OOCCH3 )6 (H2 O)3 ]NO3 have been encapsulated for the first time in the mesoporous cages of the chromium terephthalate MIL-101(Cr). The isolated clusters in MIL-101(Cr) have increased affinity towards propylene compared to propane, due to generation of a new kind of pocket-based propylene-binding site, as supported by DFT calculations.

3.
Nat Mater ; 16(5): 526-531, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27992421

RESUMEN

Selective dinitrogen binding to transition metal ions mainly covers two strategic domains: biological nitrogen fixation catalysed by metalloenzyme nitrogenases, and adsorptive purification of natural gas and air. Many transition metal-dinitrogen complexes have been envisaged for biomimetic nitrogen fixation to produce ammonia. Inspired by this concept, here we report mesoporous metal-organic framework materials containing accessible Cr(III) sites, able to thermodynamically capture N2 over CH4 and O2. This fundamental study integrating advanced experimental and computational tools confirmed that the separation mechanism for both N2/CH4 and N2/O2 gas mixtures is driven by the presence of these unsaturated Cr(III) sites that allows a much stronger binding of N2 over the two other gases. Besides the potential breakthrough in adsorption-based technologies, this proof of concept could open new horizons to address several challenges in chemistry, including the design of heterogeneous biomimetic catalysts through nitrogen fixation.

4.
Chemistry ; 21(50): 18431-8, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26515022

RESUMEN

A reducible metal-organic framework (MOF), iron(III) trimesate, denoted as MIL-100(Fe), was investigated for the separation and purification of methane/ethane/ethylene/acetylene and an acetylene/CO2 mixtures by using sorption isotherms, breakthrough experiments, ideal adsorbed solution theory (IAST) calculations, and IR spectroscopic analysis. The MIL-100(Fe) showed high adsorption selectivity not only for acetylene and ethylene over methane and ethane, but also for acetylene over CO2 . The separation and purification of acetylene over ethylene was also possible for MIL-100(Fe) activated at 423 K. According to the data obtained from operando IR spectroscopy, the unsaturated Fe(III) sites and surface OH groups are mainly responsible for the successful separation of the acetylene/ethylene mixture, whereas the unsaturated Fe(II) sites have a detrimental effect on both separation and purification. The potential of MIL-100(Fe) for the separation of a mixture of C2 H2 /CO2 was also examined by using the IAST calculations and transient breakthrough simulations. Comparing the IAST selectivity calculations of C2 H2 /CO2 for four MOFs selected from the literature, the selectivity with MIL-100(Fe) was higher than those of CuBTC, ZJU-60a, and PCP-33, but lower than that of HOF-3.

5.
Inorg Chem ; 53(5): 2491-500, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24527942

RESUMEN

The synthesis optimization and scale-up of the benchmarked microporous zirconium terephthalate UiO-66(Zr) were investigated by evaluating the impact of several parameters (zirconium precursors, acidic conditions, addition of water, and temperature) over the kinetics of crystallization by time-resolved in situ energy-dispersive X-ray diffraction. Both the addition of hydrochloric acid and water were found to speed up the reaction. The use of the less acidic ZrOCl2·8H2O as the precursor seemed to be a suitable alternative to ZrCl4·xH2O, avoiding possible reproducibility issues as a consequence of the high hygroscopic character of ZrCl4. ZrOCl2·8H2O allowed the formation of smaller good quality UiO-66(Zr) submicronic particles, paving the way for their use within the nanotechnology domain, in addition to higher reaction yields, which makes this synthesis route suitable for the preparation of UiO-66(Zr) at a larger scale. In a final step, UiO-66(Zr) was prepared using conventional reflux conditions at the 0.5 kg scale, leading to a rather high space-time yield of 490 kg m(-3) day(-1), while keeping physicochemical properties similar to those obtained from smaller scale solvothermally prepared batches.


Asunto(s)
Cloruros/química , Ácidos Ftálicos/síntesis química , Difracción de Rayos X , Circonio/química , Modelos Moleculares , Ácidos Ftálicos/química , Porosidad
6.
Chempluschem ; : e202400096, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523300

RESUMEN

A newly designed heterogenized catalyst that incorporates silver(I) ions with 2-(dicyclohexylphosphaneyl)acetaldehyde (PCy2 aldehyde) into amino-functionalized chromium(III) terephthalate is developed. Silver(I) ions were robustly immobilized on the amino-functionalized chromium(III) terephthalate, which contains an imine bond formed by the reaction with PCy2 aldehyde. The Ag(I) ion is coordinated with the phosphine in the imine group to create MIL-101-AP(Ag). Characterizations were carefully carried out according to the synthetic steps. The catalytic performance of MIL-101-AP(Ag) was evaluated through the C-H carboxylation of thiophene-2-carbonitrile, achieving a 10 % yield with a turnover number of 1.0. The recyclability of the MIL-101-AP(Ag) catalyst was successfully demonstrated with five cycle, with no loss in activity and selectivity observed. This approach, which involves the formation of an imine bond to facilitate silver loading with phosphine on amino-functionalized MIL-101(Cr), exhibits significant potential for both CO2 fixation and C-H carboxylation, thereby highlighting the modified material's promise as a sustainable catalyst.

7.
ChemSusChem ; 17(3): e202301315, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37932870

RESUMEN

The successful synthesis of finely tuned Ni1.5 Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnOx species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni1.5 Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.

8.
Adv Mater ; : e2403053, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767509

RESUMEN

Nitrogen oxides represent one of the main threats for the environment. Despite decades of intensive research efforts, a sustainable solution for NOx removal under environmental conditions is still undefined. Using theoretical modelling, material design, state-of-the-art investigation methods and mimicking enzymes, it is found that selected porous hybrid iron(II/III) based MOF material are able to decompose NOx, at room temperature, in the presence of water and oxygen, into N2 and O2 and without reducing agents. This paves the way to the development of new highly sustainable heterogeneous catalysts to improve air quality.

9.
J Nanosci Nanotechnol ; 13(4): 2714-21, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23763149

RESUMEN

We successfully fabricated the metal-organic framework (MOF), copper benzenetricarboxylate on a microchannel system, which was able to solve the problems created by increased heat dissipation in small electronic equipment. The microchannel system was designed to make an entrance part that can control the reaction temperature, which was predicted through a heat transfer analysis and the finite element method with COMSOL Multiphysics. Synthetic conditions, synthesis time, temperature and microchannel size were systematically tuned for the selective fabrication of copper benzenetricarboxylate on a microchannel surface. Scanning electron microscope (SEM) images, selected area electron diffraction (SAED) pattern and Fourier transform infrared (FT-IR) data clearly demonstrated that copper benzenetricarboxylate was strongly adhered to the bottom surfaces of the microchannels. Moreover, the synthesis of MOF in the microchannel system provided a much faster growth rate and better crystallinity compared to a conventional synthesis method.

10.
J Nanosci Nanotechnol ; 13(4): 2929-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23763181

RESUMEN

Different phases in hybrid complexes of Co(II) with cis-4-cyclohexene-1-2-dicarboxylicacid (C6H8-1,2-CO2H=Cy-H2) have been generated depending on the reaction conditions. By microwave-irradiation of the same reaction mixtures at different temperatures we have obtained two new phases Co(C8H8O4) x H2O and [Co2(OH)2.8(Cy-H)1.2]. These phases have been established by XRD, UV-DRS, IR and thermo-gravimetric studies as well as by comparison with the reported phases. In these phases the Cy is found in a cis conformation. It has been seen that microwave synthesis proves to be a rapid and clean method of obtaining new high temperature phases in high purity which are obtained, in an impure state after a long time of hydrothermal synthesis.

11.
Environ Sci Pollut Res Int ; 30(11): 31583-31604, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36449243

RESUMEN

In this paper, the effects of economic growth and four different types of energy consumption (oil, natural gas, hydroelectricity, and renewable energy) on environmental quality in terms of carbon dioxide (CO2) emissions were examined within the framework of the Environmental Kuznets Curve (EKC) for three Latin American countries, namely, Argentina, Brazil, and Chile, from 1975 to 2018. The autoregressive distributed lag (ARDL) in the form of Error Correction Mechanism (ECM) was used to verify the validity of the EKC hypothesis and the impacts of the variables in the short and the long run alike. Furthermore, the Toda-Yamamoto Granger causality test was carried out to identify the direction of causality between the variables. From ARDL-ECM estimation, the EKC was confirmed (inverted U-shaped curve between income growth and CO2 emissions) only in Argentina in the long run but not in Brazil and Chile. Based on the findings, renewable energy can have a great potential in reducing CO2 emissions in the future, but this advantage has not been fully exploited yet since a significant negative impact on CO2 emissions was only found in Chile. Also, the use of other less carbon-intensive energy sources such as natural gas and hydropower if they could be combined with renewable energy would be of great benefit and contribute to enhancing environmental quality and energy security in the short and the medium term and to successful low-carbon energy transition in the long run in Argentina, Brazil, and Chile.


Asunto(s)
Dióxido de Carbono , Gas Natural , Brasil , Chile , Argentina , Dióxido de Carbono/análisis , América Latina , Energía Renovable , Desarrollo Económico
12.
Artículo en Inglés | MEDLINE | ID: mdl-36779840

RESUMEN

Bimetallic zeolitic imidazolate frameworks (ZIFs) containing two different metal ions can exhibit superior performances when applied in heterogeneous catalysis. Herein, we present a facile one-pot synthesis method for PdCo-ZIFs with various Pd/Co ratios, where Pd(II) ions are successfully incorporated into the Co node sites of the ZIF structure. The local structure of the bimetallic ZIFs was comprehensively investigated by pore-structure, X-ray absorption fine structure, and in situ CO adsorption Fourier transform infrared analyses. The results demonstrated that the framework comprises different coordination geometries of Co (tetrahedral) and Pd (square planar) ions connected by the benzimidazolate ligand. Notably, the inherently nonporous, 2D Co-ZIF structure was transformed into a hierarchical porous structure, and the PdCo-ZIFs exhibited a significantly increased concentration of defects and distorted Co sites. Based on these results, the catalytic performances of the synthesized ZIFs in the cycloaddition of CO2 to epoxides were evaluated under a cocatalyst and solvent-free conditions. The PdCo-ZIFs exhibited significantly higher catalytic activity (maximum turnover frequency, TOF = 2501 h-1) than Co-ZIF (TOF = 65 h-1) and Pd-ZIF (no activity), which revealed that the undercoordinated Co sites with distorted structure are the active sites rather than the incorporated Pd ions. This study provides a facile one-pot method for synthesizing bimetallic ZIFs with mixed-coordination modes, hierarchical porous structures, and modified defect concentrations, which would expand the library of structurally diverse bimetallic ZIFs toward various applications.

13.
J Am Chem Soc ; 134(24): 10174-81, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22591198

RESUMEN

The uptake and adsorption enthalpy of carbon dioxide at 0.2 bar have been studied in three different topical porous MOF samples, HKUST-1, UiO-66(Zr), and MIL-100(Fe), after having been pre-equilibrated under different relative humidities (3, 10, 20, 40%) of water vapor. If in the case of microporous UiO-66, CO(2) uptake remained similar whatever the relative humidity, and correlations were difficult for microporous HKUST-1 due to its relative instability toward water vapor. In the case of MIL-100(Fe), a remarkable 5-fold increase in CO(2) uptake was observed with increasing RH, up to 105 mg g(-1) CO(2) at 40% RH, in parallel with a large decrease in enthalpy measured. Cycling measurements show slight differences for the initial three cycles and complete reversibility with further cycles. These results suggest an enhanced solubility of CO(2) in the water-filled mesopores of MIL-100(Fe).

14.
Chemistry ; 18(38): 11959-67, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22890853

RESUMEN

A reducible MIL-100(Fe) metal-organic framework (MOF) was investigated for the separation of a propane/propene mixture. An operando methodology was applied (for the first time in the case of a MOF) in order to shed light on the separation mechanism. Breakthrough curves were obtained as in traditional separation column experiments, but monitoring the material surface online, thus providing evidences on the adsorption sites. The qualitative and quantitative analyses of Fe(II) and, to some extent, Fe(III) sites were possible, upon different activation protocols. Moreover, it was possible to identify the nature and the role of the active sites in the separation process by selective poisoning of one family of sites: it was clearly evidenced that the unsaturated Fe(II) sites are mainly responsible for the separation effect of the propane/propene mixture, thanks to their affinity for the unsaturated bonds, such as the C=C entities in propene. The activity of the highly concentrated Fe(III) sites was also highlighted.


Asunto(s)
Alquenos/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Propano/química , Dominio Catalítico , Espectrofotometría Infrarroja , Espectroscopía Infrarroja Corta
15.
Dalton Trans ; 51(35): 13189-13194, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35971956

RESUMEN

Molecular trimeric ruthenium carboxylate clusters (Ru3 clusters) have been introduced into the pore channels of mesoporous metal-organic framework chromium terephthalate [MIL-101(Cr)] by employing a facile two-step post-synthetic strategy in which diamine hooks anchored on the framework metal nodes of the MOF are used to covalently immobilize the Ru3 clusters. The catalytic activity of the isolated Ru3 clusters in the pore channels of the MOF was significantly improved compared to the bulk counterpart.

16.
Nat Mater ; 9(2): 172-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20010827

RESUMEN

In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.


Asunto(s)
Diagnóstico por Imagen , Portadores de Fármacos/química , Nanoestructuras/química , Compuestos Organometálicos/química , Animales , Línea Celular Tumoral , Medios de Contraste/química , Medios de Contraste/metabolismo , Medios de Contraste/toxicidad , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Femenino , Humanos , Macrófagos/efectos de los fármacos , Imagen por Resonancia Magnética , Ratones , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/toxicidad , Tamaño de la Partícula , Porosidad , Ratas
17.
J Hazard Mater ; 417: 125904, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-33975167

RESUMEN

The development of efficient adsorbents to remove radioactive methyl iodide (CH3I) in humid environments is crucial for air purification after pollution by nuclear power plant waste. In this work, we successfully prepared a post-synthetic covalent modified MIL-101 with a sulfonate group followed by the ion-exchange of Ag (I), which is well characterized by diffuse reflectance FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and the hydrophobic index (HI). After modification of the MOFs, we applied functionalized MIL-101 obtained by either one-pot synthesis (MIL-101-SO3Ag) or a post-synthetic modification process (MIL-101-RSO3Ag, R = NH(CH2)3) to remove the CH3I at an extremely low concentration (0.31 ppm) in an environment with very high relative humidity (RH 95%). Enhanced hydrophobicity of the surface-modified MIL-101 was evaluated by examining the HI with the competitive adsorption of water and cyclohexane vapor, with a high surface area maintained, as confirmed by Ar physisorption. Interestingly, the post-synthetically modified MIL-101-RSO3Ag showed exceptional adsorption performance as determined by its decontamination factor (DF = 195,350) at 303 K and RH 95%. This performance was in comparison to Ag (I)-exchanged 13X zeolite and MIL-101-SO3Ag, which include much higher amounts of Ag. Furthermore, MIL-101-RSO3Ag retained ~94-100% of its fresh adsorbent performance during five cycle repetitions.


Asunto(s)
Cromo , Contaminantes Químicos del Agua , Hidrocarburos Yodados , Ácidos Ftálicos , Plata , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
18.
J Nanosci Nanotechnol ; 10(1): 303-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20352851

RESUMEN

Chalcopyrite, CuInSe2 was prepared by a fast microwave-assisted solvothermal synthesis. The influence of reaction temperature, concentrations of the constituents, types of copper salts and added solvent on the morphology and crystallinity of the chalcopyrite has been investigated and also the optimized parameters are presented. The optimum crystallinity was obtained at 180 degrees C reaction temperature with 0.02 M of copper ion concentration. Interestingly, when the copper acetate was used as a copper source, particle size of chalcopyrite was dramatically reduced. Moreover, the synthesis at 1L scale of the reactants gave the particle size of 20 nm for CuInSe2 which is smaller than that of small scale synthesis (23-35 nm). XRD, SEM and Raman Spectroscopy techniques are used for characterization and evaluation of the morphology of the chalcopyrite.

19.
ChemSusChem ; 13(18): 5050-5057, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32662246

RESUMEN

We report for the first time the selective production of mannitol, a low-calorie sweetener and an important pharmaceutical ingredient, from fructose using Cu-SiO2 nanocomposite as catalyst and 1-butanol as solvent. When compared with water and ethanol, a lower fructose solubility was achieved in 1-butanol, which caused a lower fructose conversion and higher mannitol selectivity by reducing formation of side products. Among various Cu-based catalysts in 1-butanol, Cu(80)-SiO2 nanocomposite gave an unprecedented mannitol (83 %) and sorbitol (15 %) yield at 120 °C, 35 bar H2 , and 10 h reaction time. More importantly, this catalyst did not show any Cu leaching and its physicochemical properties were maintained after liquid-phase fructose hydrogenation whereas other Cu-based catalysts such as Cu(32)-Cr2 O and Cu(66)-ZnO did show significant leaching of Cu and Cr. Thus, Cu(80)-SiO2 nanocomposite and 1-butanol are regarded as a robust and highly efficient catalytic system for the selective hydrogenation of fructose to mannitol. Also, density functional theory calculations supported that in addition to the stable initial structure of adsorbed fructose, the mannitol pathway was more thermodynamically favorable than the sorbitol pathway. Notably, the highly pure mannitol (99 %) could be recovered from the sorbitol-containing 1-butanol solution by simple filtration. Therefore, the present protocol is a novel and effective method to produce pure mannitol from fructose in both an environmental and an industrial context.

20.
J Hazard Mater ; 398: 122857, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32512442

RESUMEN

Unique chemical and thermal stabilities of a zirconium-based metal-organic framework (MOF) and its functionalized analogues play a key role to efficiently remove chemical warfare agents (ex., cyanogen chloride, CNCl) and simulant (dimethyl methylphosphonate, DMMP) as well as industrial toxic gas, ammonia (NH3). Herein, we for the first time demonstrate outstanding performance of MOF-808 for removal of toxic chemicals in humid environment via special design of functionalization of hydroxo species bridging Zr-nodes using a triethylenediamine (TEDA) to form ionic frameworks by gas phase acid-base reactions. In situ experimental analyses and first-principles density functional theory calculations unveil underlying mechanism on the selective deposition of TEDA on the Zr-bridging hydroxo sites (µ3-OH) in Zr-MOFs. The crystal structure of TEDA-grafted MOF-808 was confirmed using synchrotron X-ray powder diffraction (SXRPD). Furthermore, operando FT-IR spectra elucidate why the TEDA-grafted MOF-808 shows by far superior sorption efficiency to other MOF varieties. This work provides design principles and applications how to optimize MOFs for the preparation for versatile adsorbents using diamine grafting chemistry, which is also potentially applicable to various catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA