Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nanotechnology ; 34(12)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36538812

RESUMEN

Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.

2.
J Am Chem Soc ; 144(14): 6504-6515, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35353518

RESUMEN

Single-molecule circuits with group 8 metallocenes are formed without additional linker groups in scanning tunneling microscope-based break junction (STMBJ) measurements at cryogenic and room-temperature conditions with gold (Au) electrodes. We investigate the nature of this direct gold-π binding motif and its effect on molecular conductance and persistence characteristics during junction evolution. The measurement technique under cryogenic conditions tracks molecular plateaus through the full cycle of extension and compression. Analysis reveals that junction persistence when the metal electrodes are pushed together correlates with whether electrodes are locally sharp or blunt, suggesting distinct scenarios for metallocene junction formation and evolution. The top and bottom surfaces of the "barrel"-shaped metallocenes present the electron-rich π system of cyclopentadienyl rings, which interacts with the gold electrodes in two distinct ways. An undercoordinated gold atom on a sharp tip forms a donor-acceptor bond to a specific carbon atom in the ring. However, a small, flat patch on a dull tip can bind more strongly to the ring as a whole through van der Waals interactions. Density functional theory (DFT)-based calculations of model electrode structures provide an atomic-scale picture of these scenarios, demonstrating the role of these bonding motifs during junction evolution and showing that the conductance is relatively independent of tip atomic-scale structure. The nonspecific interaction of the cyclopentadienyl rings with the electrodes enables extended conductance plateaus, a mechanism distinct from that identified for the more commonly studied, rod-shaped organic molecular wires.


Asunto(s)
Oro , Nanotecnología , Electrodos , Oro/química , Metalocenos , Nanotecnología/métodos , Compuestos Organometálicos
3.
Nano Lett ; 19(6): 3457-3463, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31046292

RESUMEN

Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.

4.
Angew Chem Int Ed Engl ; 59(35): 14835-14841, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32421919

RESUMEN

Weak binding of hydrogen atoms to the 2H-MoS2 basal plane renders MoS2 inert as an electrocatalyst for the hydrogen evolution reaction. Transition-metal doping can activate neighboring sulfur atoms in the MoS2 basal plane to bind hydrogen more strongly. Our theoretical studies show strong variation in the degree of activation by dopants across the 3d transition-metal series. To understand the trends in activation, we propose a model based on the electronic promotion energy required to partially open the full valence shell of a local S atom and therefore enable it to bond with a H atom. In general, the promotion is achieved through an electron transfer from the S to neighboring metal-atom sites. Furthermore, we demonstrate a specific, electronic-structure-based descriptor for the hydrogen-binding strength: Δdp , the local interband energy separation between the lowest empty d-states on the dopant metal atoms and occupied p-states on S. This model can be used to provide guidelines for chalcogen activation in future catalyst design based on doped transition-metal dichalcogenides.

5.
Nano Lett ; 17(1): 348-354, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073258

RESUMEN

The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. Here, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, we are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. The ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.


Asunto(s)
Cerio/química , Modelos Moleculares , Nanoestructuras/química , Titanio/química , Catálisis , Cinética , Oxígeno/química , Polvos , Relación Estructura-Actividad , Propiedades de Superficie , Termodinámica
6.
Acc Chem Res ; 49(3): 452-60, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26938931

RESUMEN

Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure-function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, the scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics. Such link groups (amines, methylsuflides, pyridines, etc.) maintain a stable lone pair configuration that selectively bonds to specific, undercoordinated transition metal atoms available following rupture of a metal point contact in the STM-BJ experiments. This basic chemical principle rationalizes the observation of highly reproducible conductance signatures. Subsequently, the method has been extended to probe a variety of physical phenomena ranging from basic I-V characteristics to more complex properties such as thermopower and electrochemical response. By adapting the technique to a conducting cantilever atomic force microscope (AFM-BJ), simultaneous measurement of the mechanical characteristics of nanoscale junctions as they are pulled apart has given complementary information such as the stiffness and rupture force of the molecule-metal link bond. Overall, while the BJ technique does not produce a single molecule circuit for practical applications, it has proved remarkably versatile for fundamental studies. Measured data and analysis have been combined with atomic-scale theory and calculations, typically performed for representative junction structures, to provide fundamental physical understanding of structure-function relationships. This Account integrates across an extensive series of our specific nanoscale junction studies which were carried out with the STM- and AFM-BJ techniques and supported by theoretical analysis and density functional theory based calculations, with emphasis on the physical characteristics of the measurement process and the rich data sets that emerge. Several examples illustrate the impact of measured trends based on the most probable values for key characteristics (obtained from ensembles of order 1000-10 000 individual junctions) to build a solid picture of conductance phenomena as well as attributes of the link bond chemistry. The key forward-looking question posed here is the extent to which the full data sets represented by the individual trajectories can be analyzed to address structure-function questions at the level of individual junctions. Initial progress toward physical modeling of conductance of individual junctions indicates trends consistent with physical junction structures. Analysis of junction mechanics reveals a scaling procedure that collapses existing data onto a universal force-extension curve. This research directed to understanding the distribution of structures and physical characteristics addresses fundamental questions concerning the interplay between chemical control and stochastically driven diversity.


Asunto(s)
Relación Estructura-Actividad , Microscopía de Fuerza Atómica , Reproducibilidad de los Resultados
7.
Phys Rev Lett ; 118(21): 219902, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28598652

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.113.176802.

8.
Nano Lett ; 15(6): 4143-9, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25942441

RESUMEN

Charge transport properties of metal-molecule interfaces depend strongly on the character of molecule-electrode interactions. Although through-bond coupled systems have attracted the most attention, through-space coupling is important in molecular systems when, for example, through-bond coupling is suppressed due to quantum interference effects. To date, a probe that clearly distinguishes these two types of coupling has not yet been demonstrated. Here, we investigate the origin of flicker noise in single molecule junctions and demonstrate how the character of the molecule-electrode coupling influences the flicker noise behavior of single molecule junctions. Importantly, we find that flicker noise shows a power law dependence on conductance in all junctions studied with an exponent that can distinguish through-space and through-bond coupling. Our results provide a new and powerful tool for probing and understanding coupling at the metal-molecule interface.

9.
Nano Lett ; 15(5): 2992-7, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25816155

RESUMEN

We have identified excited exciton states in monolayers of MoS2 and WS2 supported on fused silica by means of photoluminescence excitation spectroscopy. In monolayer WS2, the positions of the excited A exciton states imply an exciton binding energy of 0.32 eV. In monolayer MoS2, excited exciton transitions are observed at energies of 2.24 and 2.34 eV. Assigning these states to the B exciton Rydberg series yields an exciton binding energy of 0.44 eV.


Asunto(s)
Disulfuros/química , Molibdeno/química , Nanotecnología , Compuestos de Tungsteno/química , Luminiscencia , Semiconductores , Análisis Espectral
11.
Nano Lett ; 14(7): 3869-75, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24933687

RESUMEN

Molybdenum disulfide bilayers with well-defined interlayer twist angle were constructed by stacking single-crystal monolayers. Varying interlayer twist angle results in strong tuning of the indirect optical transition energy and second-harmonic generation and weak tuning of direct optical transition energies and Raman mode frequencies. Electronic structure calculations show the interlayer separation changes with twist due to repulsion between sulfur atoms, resulting in shifts of the indirect optical transition energies. These results show that interlayer alignment is a crucial variable in tailoring the properties of two-dimensional heterostructures.

12.
J Am Chem Soc ; 136(4): 1391-7, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24392951

RESUMEN

Atomic-level details of dopant distributions can significantly influence the material properties. Using scanning tunneling microscopy, we investigate the distribution of substitutional dopants in nitrogen-doped graphene with regard to sublattice occupancy within the honeycomb structure. Samples prepared by chemical vapor deposition (CVD) using pyridine on copper exhibit well-segregated domains of nitrogen dopants in the same sublattice, extending beyond 100 nm. On the other hand, samples prepared by postsynthesis doping of pristine graphene exhibit a random distribution between sublattices. On the basis of theoretical calculations, we attribute the formation of sublattice domains to the preferential attachment of nitrogen to the edge sites of graphene during the CVD growth process. The breaking of sublattice symmetry in doped graphene can have important implications in its electronic applications, such as the opening of a tunable band gap in the material.

13.
J Am Chem Soc ; 136(30): 10654-60, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-24983697

RESUMEN

Singlet fission, the conversion of a singlet excitation into two triplet excitations, is a viable route to improved solar-cell efficiency. Despite active efforts to understand the singlet fission mechanism, which would aid in the rational design of new materials, a comprehensive understanding of mechanistic principles is still lacking. Here, we present the first study of singlet fission in crystalline hexacene which, together with tetracene and pentacene, enables the elucidation of mechanistic trends. We characterize the static and transient optical absorption and combine our findings with a theoretical analysis of the relevant electronic couplings and rates. We find a singlet fission time scale of 530 fs, which is orders of magnitude faster than tetracene (10-100 ps) but significantly slower than pentacene (80-110 fs). We interpret this increased time scale as a multiphonon relaxation effect originating from a large exothermicity and present a microscopic theory that quantitatively reproduces the rates in the acene family.

14.
Acc Chem Res ; 46(6): 1321-9, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23581494

RESUMEN

The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline tetracene lattice satisfactorily accounts for the experimental observations. It also reveals the critical roles of the charge transfer states and the high dephasing rates in ensuring the ultrafast formation of multiexciton states. In addition, we address the origins of microscopic relaxation and dephasing rates, and adopt these rates in a quantum master equation description. We show the need to take the theoretical effort one step further in the near future by combining high-level electronic structure calculations with accurate quantum relaxation dynamics for large systems.

15.
Phys Rev Lett ; 113(17): 176802, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25379929

RESUMEN

A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

16.
Phys Rev Lett ; 113(7): 076802, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25170725

RESUMEN

We have experimentally determined the energies of the ground and first four excited excitonic states of the fundamental optical transition in monolayer WS_{2}, a model system for the growing class of atomically thin two-dimensional semiconductor crystals. From the spectra, we establish a large exciton binding energy of 0.32 eV and a pronounced deviation from the usual hydrogenic Rydberg series of energy levels of the excitonic states. We explain both of these results using a microscopic theory in which the nonlocal nature of the effective dielectric screening modifies the functional form of the Coulomb interaction. These strong but unconventional electron-hole interactions are expected to be ubiquitous in atomically thin materials.

17.
Phys Chem Chem Phys ; 16(24): 12057-66, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24686328

RESUMEN

The GaN/ZnO alloy functions as a visible-light photocatalyst for splitting water into hydrogen and oxygen. As a first step toward understanding the mechanism and energetics of water-splitting reactions, we investigate the microscopic structure of the aqueous interfaces of the GaN/ZnO alloy and compare them with the aqueous interfaces of pure GaN and ZnO. Specifically, we have studied the (101̄0) surface of GaN and ZnO and the (101̄0) and (12̄10) surfaces of the 1 : 1 GaN/ZnO alloy. The calculations are carried out using first-principles density functional theory based molecular dynamics (DFT-MD). The structure of water within a 3 Šdistance from the semiconductor surface is significantly altered by the acid/base chemistry of the aqueous interface. Water adsorption on all surfaces is substantially dissociative such that the surface anions (N or O) act as bases accepting protons from dissociated water molecules while the corresponding hydroxide ions bond with surface cations (Ga or Zn). Additionally, the hard-wall interface presented by the semiconductor imparts ripples in the density of water. Beyond a 3 Šdistance from the semiconductor surface, water exhibits a bulk-like hydrogen bond network and oxygen-oxygen radial distribution function. Taken together, these characteristics represent the resting (or "dark") state of the catalytic interface. The electronic structure analysis of the aqueous GaN/ZnO interface suggests that the photogenerated holes may get trapped on interface species other than the adsorbed OH(-) ions. This suggests additional dynamical steps in the water oxidation process.

18.
J Chem Phys ; 141(7): 074705, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25149804

RESUMEN

We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

19.
Nano Lett ; 13(7): 3358-64, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23731268

RESUMEN

We compare the conductance of a series of amine-terminated oligophenyl and alkane molecular junctions formed with Ag and Au electrodes using the scanning tunneling microscope based break-junction technique. For these molecules that conduct through the highest occupied molecular orbital, junctions formed with Au electrodes are more conductive than those formed with Ag electrodes, consistent with the lower work function for Ag. The measured conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same for Ag and Au electrodes. However, the formation and evolution of molecular junctions upon elongation are very different for these two metals. Specifically, junctions formed with Ag electrodes sustain significantly longer elongation when compared with Au due to a difference in the initial gap opened up when the metal point-contact is broken. Using this observation and density functional theory calculations of junction structure and conductance we explain the trends observed in the single molecule junction conductance. Our work thus opens a new path to the conductance measurements of a single molecule junction in Ag electrodes.


Asunto(s)
Biopolímeros/análisis , Biopolímeros/química , Conductometría/instrumentación , Nanopartículas del Metal/química , Microelectrodos , Nanotecnología/instrumentación , Plata/química , Simulación por Computador , Diseño Asistido por Computadora , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Nanopartículas del Metal/ultraestructura , Modelos Químicos
20.
Nat Mater ; 11(10): 872-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22886066

RESUMEN

Van der Waals (vdW) interaction, and its subtle interplay with chemically specific interactions and surface roughness at metal/organic interfaces, is critical to the understanding of structure-function relations in diverse areas, including catalysis, molecular electronics and self-assembly. However, vdW interactions remain challenging to characterize directly at the fundamental, single-molecule level both in experiments and in first principles calculations with accurate treatment of the non-local, London dispersion interactions. In particular, for metal/organic interfaces, efforts so far have largely focused on model systems consisting of adsorbed molecules on flat metallic surfaces with minimal specific chemical interaction. Here we show, through measurements of single-molecule mechanics, that pyridine derivatives can bind to nanostructured Au electrodes through an additional binding mechanism beyond the chemically specific N-Au donor-acceptor bond. Using density functional theory simulations we show that vdW interactions between the pyridine ring and Au electrodes can play a key role in the junction mechanics. These measurements thus provide a quantitative characterization of vdW interactions at metal/organic interfaces at the single-molecule level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA