Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Glob Chang Biol ; 30(8): e17471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39188066

RESUMEN

Climate change has triggered poleward expansions in the distributions of various taxonomic groups, including tree species. Given the ecological significance of trees as keystone species in forests and their socio-economic importance, projecting the potential future distributions of tree species is crucial for devising effective adaptation strategies for both biomass production and biodiversity conservation in future forest ecosystems. Here, we fitted physiographically informed habitat suitability models (HSMs) at 50-m resolution across Sweden (55-68° N) to estimate the potential northward expansion of seven broadleaved tree species within their leading-edge distributions in Europe under different future climate change scenarios and for different time periods. Overall, we observed that minimum temperature was the most crucial variable for comprehending the spatial distribution of broadleaved tree species at their cold limits. Our HSMs projected a complex range expansion pattern for 2100, with individualistic differences among species. However, a frequent and rather surprising pattern was a northward expansion along the east coast followed by narrow migration pathways along larger valleys towards edaphically suitable areas in the north-west, where most of the studied species were predicted to expand. The high-resolution maps generated in this study offer valuable insights for our understanding of range shift dynamics at the leading edge of southern tree species as they expand into the receding boreal biome. These maps suggest areas where broadleaved tree species could already be translocated to anticipate forest and biodiversity conservation adaptation efforts in the face of future climate change.


Asunto(s)
Cambio Climático , Árboles , Árboles/crecimiento & desarrollo , Suecia , Ecosistema , Bosques , Biodiversidad , Modelos Teóricos , Dispersión de las Plantas , Temperatura
2.
Glob Chang Biol ; 30(7): e17424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044435

RESUMEN

Extreme droughts are globally increasing in frequency and severity. Most research on drought in forests focuses on the response of trees, while less is known about the impacts of drought on forest understory species and how these effects are moderated by the local environment. We assessed the impacts of a 45-day experimental summer drought on the performance of six boreal forest understory plants, using a transplant experiment with rainout shelters replicated across 25 sites. We recorded growth, vitality and reproduction immediately, 2 months, and 1 year after the simulated drought, and examined how differences in ambient soil moisture and canopy cover among sites influenced the effects of drought on the performance of each species. Drought negatively affected the growth and/or vitality of all species, but the effects were stronger and more persistent in the bryophytes than in the vascular plants. The two species associated with older forests, the moss Hylocomiastrum umbratum and the orchid Goodyera repens, suffered larger effects than the more generalist species included in the experiment. The drought reduced reproductive output in the moss Hylocomium splendens in the next growing season, but increased reproduction in the graminoid Luzula pilosa. Higher ambient soil moisture reduced some negative effects of drought on vascular plants. Both denser canopy cover and higher soil moisture alleviated drought effects on bryophytes, likely through alleviating cellular damage. Our experiment shows that boreal understory species can be adversely affected by drought and that effects might be stronger for bryophytes and species associated with older forests. Our results indicate that the effects of drought can vary over small spatial scales and that forest landscapes can be actively managed to alleviate drought effects on boreal forest biodiversity. For example, by managing the tree canopy and protecting hydrological networks.


Asunto(s)
Sequías , Bosques , Estaciones del Año , Suelo , Suelo/química , Agua/análisis , Taiga , Reproducción , Árboles/crecimiento & desarrollo
3.
Mol Ecol ; 32(10): 2484-2503, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35377502

RESUMEN

Conventional wisdom states that genetic variation reduces disease levels in plant populations. Nevertheless, crop species have been subject to a gradual loss of genetic variation through selection for specific traits during breeding, thereby increasing their vulnerability to biotic stresses such as pathogens. We explored how genetic variation in Arabica coffee sites in southwestern Ethiopia was related to the incidence of four major fungal diseases. Sixty sites were selected along a gradient of management intensity, ranging from nearly wild to intensively managed coffee stands. We used genotyping-by-sequencing of pooled leaf samples (pool-GBS) derived from 16 individual coffee shrubs in each of the 60 sites to assess the variation in genetic composition (multivariate: reference allele frequency) and genetic diversity (univariate: mean expected heterozygosity) between sites. We found that genetic composition had a clear spatial pattern and that genetic diversity was higher in less managed sites. The incidence of the four fungal diseases was related to the genetic composition of the coffee stands, but in a specific way for each disease. In contrast, genetic diversity was only related to the within-site variation of coffee berry disease, but not to the mean incidence of any of the four diseases across sites. Given that fungal diseases are major challenges of Arabica coffee in its native range, our findings that genetic composition of coffee sites impacted the major fungal diseases may serve as baseline information to study the molecular basis of disease resistance in coffee. Overall, our study illustrates the need to consider both host genetic composition and genetic diversity when investigating the genetic basis for variation in disease levels.


Asunto(s)
Coffea , Micosis , Coffea/genética , Fitomejoramiento , Etiopía
4.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37128754

RESUMEN

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Asunto(s)
Microclima , Árboles , Temperatura , Bosques , Ecosistema
5.
Ecol Appl ; 33(4): e2851, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36938961

RESUMEN

Forest fragmentation increases the amount of edges in the landscape. Differences in wind, radiation, and vegetation structure create edge-to-interior gradients in forest microclimate, and these gradients are likely to be more pronounced during droughts and heatwaves. Although the effects of climate extremes on edge influences have potentially strong and long-lasting impacts on forest understory biodiversity, they are not well understood and are not often considered in management and landscape planning. Here we used a novel method of retrospectively quantifying growth to assess biologically relevant edge influences likely caused by microclimate using Hylocomium splendens, a moss with annual segments. We examined how spatio-temporal variation in drought across 3 years and 46 sites in central Sweden, affected the depth and magnitude of edge influences. We also investigated whether edge effects during drought were influenced by differences in forest structure. Edge effects were almost twice as strong in the drought year compared to the non-drought years, but we did not find clear evidence that they penetrated deeper into the forest in the drought year. Edge influences were also greater in areas that had fewer days with rain during the drought year. Higher levels of forest canopy cover and tree height buffered the magnitude of edge influence in times of drought. Our results demonstrate that edge effects are amplified by drought, suggesting that fragmentation effects are aggravated when droughts become more frequent and severe. Our results suggest that dense edges and buffer zones with high canopy cover can be important ways to mitigate negative drought impacts in forest edges.


Asunto(s)
Briófitas , Bosques , Estudios Retrospectivos , Árboles , Clima , Biodiversidad , Sequías
6.
Conserv Biol ; 36(3): e13847, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34622491

RESUMEN

Conservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold-favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold-favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm-favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.


Adaptación Climática de la Conservación de la Biodiversidad en Paisajes Forestales Gestionados Resumen La conservación de la biodiversidad en los paisajes forestales gestionados necesita complementarse con estrategias nuevas debido a la amenaza del cambio climático acelerado. La mayoría de los marcos de trabajo para la adaptación de la conservación de la biodiversidad ante el cambio climático incluye dos estrategias principales. La primera es la estrategia de resistencia, la cual se enfoca en acciones para incrementar la capacidad de las especies y comunidades para resistir el cambio. La segunda es la estrategia de transformación e incluye acciones que facilitan la transformación de las comunidades a un conjunto de especies que están bien adaptadas a las nuevas condiciones ambientales. Sugerimos un número de acciones concretas que los gestores y los formuladores de políticas pueden tomar. Bajo la estrategia de resistencia, introducimos cinco herramientas, incluyendo: identificación y protección de los refugios climáticos forestales con especies favorecidas por el frío, reducción de los efectos de la sequía mediante la protección de la red hidrológica y extirpación activa de los competidores cuando amenacen a las especies favorecidas por el frío. Bajo la estrategia de transformación, sugerimos tres herramientas, incluyendo: mejorar las condiciones para las especies forestales favorecidas por el nuevo clima pero actualmente desfavorecidas por la gestión forestal, mediante su siembra en sitios adecuados fuera de su distribución principal e incrementando la conectividad en el paisaje para incrementar la expansión de las especies favorecidas por el calor hacia sitios que se han vuelto más adecuados. Finalmente, sugerimos aplicar una perspectiva de paisaje y gestionar simultáneamente tanto para las especies en retirada y en expansión. Las dos estrategias diferentes (resistencia y transformación) deberían considerarse como maneras complementarias para mantener una biodiversidad rica en los ecosistemas forestales del futuro.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Cambio Climático , Bosques
7.
Glob Chang Biol ; 27(11): 2279-2297, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33725415

RESUMEN

Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.


Asunto(s)
Cambio Climático , Microclima , Biodiversidad , Ecosistema , Bosques , Árboles
8.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605132

RESUMEN

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Asunto(s)
Bosques , Microclima , Cambio Climático , Temperatura , Árboles
9.
Glob Chang Biol ; 26(2): 471-483, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31833152

RESUMEN

Climate warming is likely to shift the range margins of species poleward, but fine-scale temperature differences near the ground (microclimates) may modify these range shifts. For example, cold-adapted species may survive in microrefugia when the climate gets warmer. However, it is still largely unknown to what extent cold microclimates govern the local persistence of populations at their warm range margin. We located 99 microrefugia, defined as sites with edge populations of 12 widespread boreal forest understory species (vascular plants, mosses, liverworts and lichens) in an area of ca. 24,000 km2 along the species' southern range margin in central Sweden. Within each population, a logger measured temperature eight times per day during one full year. Using univariate and multivariate analyses, we examined the differences of the populations' microclimates with the mean and range of microclimates in the landscape, and identified the typical climate, vegetation and topographic features of these habitats. Comparison sites were drawn from another logger data set (n = 110), and from high-resolution microclimate maps. The microrefugia were mainly places characterized by lower summer and autumn maximum temperatures, late snow melt dates and high climate stability. Microrefugia also had higher forest basal area and lower solar radiation in spring and autumn than the landscape average. Although there were common trends across northern species in how microrefugia differed from the landscape average, there were also interspecific differences and some species contributed more than others to the overall results. Our findings provide biologically meaningful criteria to locate and spatially predict potential climate microrefugia in the boreal forest. This opens up the opportunity to protect valuable sites, and adapt forest management, for example, by keeping old-growth forests at topographically shaded sites. These measures may help to mitigate the loss of genetic and species diversity caused by rear-edge contractions in a warmer climate.


Asunto(s)
Cambio Climático , Taiga , Clima , Bosques , Suecia , Temperatura
10.
Glob Chang Biol ; 24(7): 2952-2964, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29635859

RESUMEN

Species are often controlled by biotic factors such as competition at the warm edge of their distribution range. Disturbances at the treeline, disrupting competitive dominance, may thus enable alpine species to utilize lower altitudes. We searched for evidence for range expansion in grazed, fire-managed Ethiopian subalpine Erica heathlands across a 25-year chronosequence. We examined vascular plant composition in 48 plots (5 × 5 m) across an altitudinal range of 3,465-3,711 m.a.s.l. and analyzed how community composition changed in relation to increasing competition over time (using a Shade index based on Erica shrub height and cover) and altitude. Species' habitats and altitudinal ranges were derived from literature. Time since fire explained more variation (r2  = .41) in species composition than altitude did (r2  = .32) in an NMDS analysis. Community-weighted altitudinal optima for species in a plot decreased strongly with increasing shade (GLM, Standardized Regression Coefficient SRC = -.41, p = .003), but increased only weakly with altitude (SRC = .26, p = .054). In other words, young stands were dominated by species with higher altitudinal optima than old stands. Forest species richness increased with Log Shade index (SRC = .12, p = .008), but was unaffected by altitude (SRC = -.07, p = .13). However, richness of alpine and heathland species was not highest in plots with lowest Shade index, but displayed a unimodal pattern with an initial increase, followed by a decrease when shading increased (altitude was not significant). Our results indicate that disturbance from the traditional patch burning increases the available habitat for less competitive high-altitude plants and prevents tree line ascent. Therefore, maintaining, but regulating, the traditional land use increases the Afro-alpine flora's resilience to global warming. However, this system is threatened by a new REDD+ program attempting to increase carbon storage via fire suppression. This study highlights the importance of understanding traditional management regimes for biodiversity conservation in cultural landscapes in an era of global change.


Asunto(s)
Cambio Climático , Incendios , Desarrollo de la Planta , Plantas/clasificación , África , Altitud , Biodiversidad
11.
Proc Biol Sci ; 283(1838)2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629036

RESUMEN

The expansion of pollinator-dependent crops, especially in the developing world, together with reports of worldwide pollinator declines, raises concern of possible yield gaps. Farmers directly reliant on pollination services for food supply often live in regions where our knowledge of pollination services is poor. In a manipulative experiment replicated at 23 sites across an Ethiopian agricultural landscape, we found poor pollination services and severe pollen limitation in a common oil crop. With supplementary pollination, the yield increased on average by 91%. Despite the heterogeneous agricultural matrix, we found a low bee abundance, which may explain poor pollination services. The variation in pollen limitation was unrelated to surrounding forest cover, local bee richness and bee abundance. While practices that commonly increase pollinators (restricted pesticide use, flower strips) are an integral part of the landscape, these elements are apparently insufficient. Management to increase pollination services is therefore in need of urgent investigation.


Asunto(s)
Agricultura/métodos , Abejas , Polinización , Animales , Productos Agrícolas , Etiopía , Flores , Polen
12.
Ambio ; 53(7): 1002-1014, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38402490

RESUMEN

Increasing temperatures and shifting precipitation patterns have major consequences for smallholder farmers, especially in the Global South. Our study examined spatial patterns and climatic drivers of farmers' perceptions of climate change, and how these perceptions translated into adaptation actions. We interviewed 56 farmers in southwestern Ethiopia and analyzed ERA5-Land reanalysis climate data from 1971 to 2020. The majority of farmers perceived the recorded temperature increase as well as a decrease and shift in the timing of rainfall. Perceived climate change varied with local climate factors and not with the rate of climate change itself. Farmers' adaptation practices showed associations with local temperature, but not with farmers' perceptions of climate change. Our findings highlight that even if farmers perceive climate change, perceptions are most common in areas where climate action is already urgent, and perceptions may not translate into adaptation. Thus, targeted and timely information and extension programs are crucial.


Asunto(s)
Cambio Climático , Agricultores , Etiopía , Agricultores/psicología , Humanos , Agricultura , Percepción , Café , Coffea
13.
Commun Biol ; 7(1): 714, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858451

RESUMEN

The reality for conservation of biodiversity across our planet is that all ecosystems are modified by humans in some way or another. Thus, biodiversity conservation needs to be implemented in multifunctional landscapes. In this paper we use a fascinating coffee-dominated landscape in southwest Ethiopia as our lens to derive general lessons for biodiversity conservation in a post-wild world. Considering a hierarchy of scales from genes to multi-species interactions and social-ecological system contexts, we focus on (i) threats to the genetic diversity of crop wild relatives, (ii) the mechanisms behind trade-offs between biodiversity and agricultural yields, (iii) underexplored species interactions suppressing pest and disease levels, (iv) how the interactions of climate change and land-use change sometimes provide opportunities for restoration, and finally, (v) how to work closely with stakeholders to identify scenarios for sustainable development. The story on how the ecology and evolution of coffee within its indigenous distribution shape biodiversity conservation from genes to social-ecological systems can inspire us to view other landscapes with fresh eyes. The ubiquitous presence of human-nature interactions demands proactive, creative solutions to foster biodiversity conservation not only in remote protected areas but across entire landscapes inhabited by people.


Asunto(s)
Biodiversidad , Café , Conservación de los Recursos Naturales , Etiopía , Conservación de los Recursos Naturales/métodos , Cambio Climático , Agricultura/métodos , Coffea , Humanos , Ecosistema , Variación Genética , Productos Agrícolas/genética
14.
Ecology ; 105(1): e4191, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37878669

RESUMEN

Climate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small-scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism-relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.


Asunto(s)
Cambio Climático , Clima , Humanos , Bosques , Dinámica Poblacional , Estaciones del Año , Plantas
15.
Conserv Biol ; 27(5): 1031-40, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23772911

RESUMEN

Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest-agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973-2010) across elevations in 2 forest-agriculture mosaic landscapes (1100 km(2) around Bonga and 3000 km(2) in Goma-Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee-growing elevations compared with at higher elevations (-10/20% vs. -40/50% comparing relative rates at 1800 m asl and 2300-2500 m asl, respectively). Within the coffee-growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest-specialist species. Even if the presence of coffee slows down the conversion of forest to annual-crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value.


Asunto(s)
Agricultura/métodos , Coffea , Conservación de los Recursos Naturales , Árboles , Etiopía , Geografía , Comunicaciones por Satélite , Clima Tropical
16.
Landsc Ecol ; 37(7): 1839-1853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795191

RESUMEN

Context: Both climatic extremes and land-use change constitute severe threats to biodiversity, but their interactive effects remain poorly understood. In forest ecosystems, the effects of climatic extremes can be exacerbated at forest edges. Objectives: We explored the hypothesis that an extreme summer drought reduced the richness and coverage of old-growth forest species, particularly in forest patches with high edge exposure. Methods: Using a high-resolution spatially explicit precipitation dataset, we could detect variability in drought intensity during the summer drought of 2018. We selected 60 old-growth boreal forest patches in central Sweden that differed in their level of drought intensity and amount of edge exposure. The year after the drought, we surveyed red-listed and old-growth forest indicator species of vascular plants, lichens and bryophytes. We assessed if species richness, composition, and coverage were related to drought intensity, edge exposure, and their interaction. Results: Species richness was negatively related to drought intensity in forest patches with a high edge exposure, but not in patches with less edge exposure. Patterns differed among organism groups and were strongest for cyanolichens, epiphytes associated with high-pH bark, and species occurring on convex substrates such as trees and logs. Conclusions: Our results show that the effects of an extreme climatic event on forest species can vary strongly across a landscape. Edge exposed old-growth forest patches are more at risk under extreme climatic events than those in continuous forests. This suggest that maintaining buffer zones around forest patches with high conservation values should be an important conservation measure. Supplementary information: The online version contains supplementary material available at 10.1007/s10980-022-01441-9.

17.
Sci Total Environ ; 810: 151338, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748832

RESUMEN

Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.


Asunto(s)
Cambio Climático , Bosques , Ecosistema , Microclima , Temperatura
18.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35808863

RESUMEN

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Asunto(s)
Biodiversidad , Bosques , Animales , Aves , Ecosistema , Humanos , Plantas , Árboles
19.
Oecologia ; 167(4): 1093-101, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21706332

RESUMEN

The extent to which a plant assemblage might recolonize a disturbed system is in general related to the availability of propagule sources and sites with appropriate conditions for establishment. Both these factors might be sensitive to aspects of spatial heterogeneity. Microtopographic variation may enhance initial resistance by reducing the impact of the disturbance and facilitating establishment of incoming propagules by providing shaded "safe-sites". This study explores the influence of microtopographic heterogeneity (caused by variation in surface boulder cover) on the recolonization of closed-canopy forest floor bryophytes using a chronosequence of 75 spruce-dominated forests in south-central Sweden (2-163 years after clear-cutting). We found that high boulder cover did increase survival and subsequent persistence in young forests at both investigated scales (i.e. 1,000 and 100 m(2)), although this pattern became less evident on the smaller spatial scale. Species accumulation in boulder-poor subplots was not different when surrounded by boulder-rich compared with boulder-poor subplots suggesting short-distance recolonization from boulder-created refugia to be of little importance during recolonization. To conclude, it seems that boulders increase initial resistance to clear-cutting for this bryophyte guild, but that the subsequent recolonization process is more likely to depend on external propagule sources and factors affecting establishment such as the microclimate in the developing stand.


Asunto(s)
Briófitas/fisiología , Ecosistema , Agricultura Forestal , Monitoreo del Ambiente , Dinámica Poblacional , Especificidad de la Especie , Suecia , Árboles
20.
Ecol Evol ; 11(22): 15846-15859, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824794

RESUMEN

To understand colonization processes, it is critical to fully assess the role of dispersal in shaping biogeographical patterns at the gene, individual, population, and community levels. We test two alternative hypotheses (H I and H II) for the colonization of disturbed sites by clonal plants, by analyzing intraspecific genetic variation in one and reproductive traits in two typical fen mosses with separate sexes and intermittent spore dispersal, comparing disturbed, early-succession (limed) fens and late-successional rich fens. H I suggests initial colonization of disturbed sites by diverse genotypes of which fewer remain in late-successional fens and an initially balanced sex ratio that develops into a possibly skewed population sex ratio. H II suggests initial colonization by few genotypes and gradual accumulation of additional genotypes and an initially skewed sex ratio that alters into the species-specific sex ratio, during succession. Under both scenarios, we expect enhanced sexual reproduction in late-successional fens due to resource gains and decreased intermate distances when clones expand. We show that the intraspecific genetic diversity, assessed by two molecular markers, in Scorpidium cossonii was higher and the genetic variation among sites was smaller in disturbed than late-successional rich fens. Sex ratio was balanced in S. cossonii and Campylium stellatum in disturbed fens and skewed in C. stellatum in late-successional fens, thus supporting H I. In line with our prediction, sex expression incidence was higher in, and sporophytes were confined to, late-succession compared to disturbed rich fens. Late-successional S. cossonii sites had more within-site patches with two or more genotypes, and both species displayed higher sex expression levels in late-successional than in disturbed sites. We conclude that diverse genotypes and both sexes disperse efficiently to, and successfully colonize new sites, while patterns of genetic variation and sexual reproduction in late-successional rich fens are gradually shaped by local conditions and interactions over extended time periods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA