Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cells ; 38(4): 516-529, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31778275

RESUMEN

Pluripotent stem cells (PSCs) can serve as an unlimited cell source for transplantation therapies for treating various devastating diseases, such as cardiovascular diseases, diabetes, and Parkinson's disease. However, PSC transplantation has some associated risks, including teratoma formation from the remaining undifferentiated PSCs. Thus, for successful clinical application, it is essential to ablate the proliferative PSCs before or after transplantation. In this study, neural stem cell-derived conditioned medium (NSC-CM) inhibited the proliferation of PSCs and PSC-derived neural precursor (NP) cells without influencing the potential of PSC-NP cells to differentiate into neurons in vitro and prevented teratoma growth in vivo. Moreover, we found that the NSC-CM remarkably decreased the expression levels of Oct4 and cyclin D1 that Oct4 directly binds to and increased the cleaved-caspase 3-positive cell death through the DNA damage response in PSCs and PSC-NPs. Interestingly, we found that NSCs distinctly secreted the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 proteins. These proteins suppressed not only the proliferation of PSCs in cell culture but also teratoma growth in mice transplanted with PSCs through inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 activity. Taken together, these results suggest that the TIMP proteins may improve the efficacy and safety of the PSC-based transplantation therapy.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Teratoma/terapia , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Desnudos , Teratoma/patología
2.
Eur J Pharm Biopharm ; 69(3): 1040-5, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18411045

RESUMEN

Despite the advantages of drug delivery through the skin, such as easy accessibility, convenience, prolonged therapy, avoidance of the liver first-pass metabolism and a large surface area, transdermal drug delivery is only used with a small subset of drugs because most compounds cannot cross the skin at therapeutically useful rates. Recently, a new concept was introduced known as microneedles and these could be pierced to effectively deliver drugs using micron-sized needles in a minimally invasive and painless manner. In this study, biocompatible polycarbonate (PC) microneedle arrays with various depths (200 and 500 microm) and densities (45, 99 and 154 ea/cm2) were fabricated using a micro-mechanical process. The skin permeability of a hydrophilic molecule, calcein (622.5D), was examined according to the delivery systems of microneedle, drug loading, depth of the PC microneedle, and density of the PC microneedle. The skin permeability of calcein was the highest when the calcein gel was applied to the skin with the 500 microm-depth PC microneedle, simultaneously. In addition, the skin permeability of calcein was the highest when 0.1g of calcein gel was coupled to the 500 microm-depth PC microneedle (154 ea/cm2) as well as longer microneedles and larger density of microneedles. Taken together, this study suggests that a biocompatible PC microneedle might be a suitable tool for transdermal drug delivery system of hydrophilic molecules with the possible applications to macromolecules such as proteins and peptides.


Asunto(s)
Fluoresceínas/administración & dosificación , Agujas , Administración Cutánea , Algoritmos , Animales , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Fluoresceínas/química , Colorantes Fluorescentes , Geles , Técnicas In Vitro , Masculino , Modelos Estadísticos , Nanopartículas , Ratas , Ratas Sprague-Dawley , Absorción Cutánea , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA