Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870055

RESUMEN

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Pulmonares , Sirtuinas , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
2.
Nucleic Acids Res ; 51(13): 6754-6769, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37309898

RESUMEN

The Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed. SIRT1-deficient cells show impaired DDR reflected in a decrease in repair capacity, increased genome instability and decreased levels of γH2AX. Here we unveil a close functional antagonism between SIRT1 and the PP4 phosphatase multiprotein complex in the regulation of the DDR. Upon DNA damage, SIRT1 interacts specifically with the catalytical subunit PP4c and promotes its inhibition by deacetylating the WH1 domain of the regulatory subunits PP4R3α/ß. This in turn regulates γH2AX and RPA2 phosphorylation, two key events in the signaling of DNA damage and repair by HR. We propose a mechanism whereby during stress, SIRT1 signaling ensures a global control of DNA damage signaling through PP4.


Asunto(s)
Daño del ADN , Sirtuina 1 , Animales , Humanos , Mamíferos/metabolismo , Monoéster Fosfórico Hidrolasas , Fosforilación , Transducción de Señal , Sirtuina 1/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495326

RESUMEN

Adaptation to different forms of environmental stress is crucial for maintaining essential cellular functions and survival. The nucleolus plays a decisive role as a signaling hub for coordinating cellular responses to various extrinsic and intrinsic cues. p53 levels are normally kept low in unstressed cells, mainly due to E3 ubiquitin ligase MDM2-mediated degradation. Under stress, nucleophosmin (NPM) relocates from the nucleolus to the nucleoplasm and binds MDM2, thereby preventing degradation of p53 and allowing cell-cycle arrest and DNA repair. Here, we demonstrate that the mammalian sirtuin SIRT7 is an essential component for the regulation of p53 stability during stress responses induced by ultraviolet (UV) irradiation. The catalytic activity of SIRT7 is substantially increased upon UV irradiation through ataxia telangiectasia mutated and Rad3 related (ATR)-mediated phosphorylation, which promotes efficient deacetylation of the SIRT7 target NPM. Deacetylation is required for stress-dependent relocation of NPM into the nucleoplasm and MDM2 binding, thereby preventing ubiquitination and degradation of p53. In the absence of SIRT7, stress-dependent stabilization of p53 is abrogated, both in vitro and in vivo, impairing cellular stress responses. The study uncovers an essential SIRT7-dependent mechanism for stabilization of the tumor suppressor p53 in response to genotoxic stress.


Asunto(s)
Daño del ADN , Proteínas Nucleares/metabolismo , Sirtuinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta , Acetilación/efectos de la radiación , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Catálisis/efectos de la radiación , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Nucléolo Celular/efectos de la radiación , Humanos , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Nucleofosmina , Fosforilación/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transcripción Genética/efectos de la radiación , Ubiquitinación/efectos de la radiación
4.
Proc Natl Acad Sci U S A ; 114(40): E8352-E8361, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923965

RESUMEN

Sirtuins (Sirt1-Sirt7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases, which play decisive roles in chromatin silencing, cell cycle regulation, cellular differentiation, and metabolism. Different sirtuins control similar cellular processes, suggesting a coordinated mode of action but information about potential cross-regulatory interactions within the sirtuin family is still limited. Here, we demonstrate that Sirt1 requires autodeacetylation to efficiently deacetylate targets such as p53, H3K9, and H4K16. Sirt7 restricts Sirt1 activity by preventing Sirt1 autodeacetylation causing enhanced Sirt1 activity in Sirt7-/- mice. Increased Sirt1 activity in Sirt7-/- mice blocks PPARγ and adipocyte differentiation, thereby diminishing accumulation of white fat. Thus, reduction of Sirt1 activity restores adipogenesis in Sirt7-/- adipocytes in vitro and in vivo. We disclosed a principle controlling Sirt1 activity and uncovered an unexpected complexity in the crosstalk between two different sirtuins. We propose that antagonistic interactions between Sirt1 and Sirt7 are pivotal in controlling the signaling network required for maintenance of adipose tissue.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo Blanco/citología , Tejido Adiposo/citología , Sirtuina 1/fisiología , Sirtuinas/fisiología , Acetilación , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Catálisis , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Conformación Proteica , Transducción de Señal , Sirtuina 1/química , Sirtuinas/química
5.
Pediatr Cardiol ; 39(5): 983-992, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29497772

RESUMEN

Cardiovascular diseases represent a major cause of death and morbidity. Cardiac and vascular pathologies develop predominantly in the aged population in part due to lifelong exposure to numerous risk factors but are also found in children and during adolescence. In comparison to adults, much has to be learned about the molecular pathways driving cardiovascular diseases in the pediatric population. Sirtuins are highly conserved enzymes that play pivotal roles in ensuring cardiac homeostasis under physiological and stress conditions. In this review, we discuss novel findings about the biological functions of these molecules in the cardiovascular system and their possible involvement in pediatric cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Corazón/fisiopatología , Sirtuinas/metabolismo , Animales , Cardiología , Niño , Femenino , Humanos , Masculino , Factores de Riesgo
6.
Biochem Biophys Res Commun ; 492(3): 434-440, 2017 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-28842251

RESUMEN

Maintenance of highly compact heterochromatin at ribosomal DNA (rDNA) segments is essential to prevent homologous recombination between rDNA repeats and for preserving genomic stability and nucleolar architecture. Here, we investigated the role of Sirtuin 7 (Sirt7) in the regulation of rDNA chromatin structure, rDNA repeat stability and nucleolar organization. We found that Sirt7 mediates heterochromatin formation at rRNA genes through recruitment of DNA methyltransferase 1 and another member of the sirtuin family, Sirt1. Lack of Sirt7 leads to nucleolar fragmentation associated with hypomethylation of rDNA and hyperacetylation of histones at rDNA loci resulting in rDNA and genomic instability. Our findings suggest a novel role of Sirt7 in preventing cellular transformation by mediating maintenance of rDNA repeats and nucleolar integrity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Ribosómico/genética , Heterocromatina/genética , Sirtuina 1/metabolismo , Sirtuinas/metabolismo , Animales , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1 , Humanos , Ratones , Sirtuinas/deficiencia
7.
Biochim Biophys Acta ; 1853(10 Pt A): 2580-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26142927

RESUMEN

Proteostasis is crucial for life and maintained by cellular chaperones and proteases. One major mitochondrial protease is the ClpXP complex, which is comprised of a catalytic ClpX subunit and a proteolytic ClpP subunit. Based on two separate observations, we hypothesized that ClpX may play a leading role in the cellular function of ClpXP. Therefore, we analyzed the effect of ClpX overexpression on a myoblast proteome by quantitative proteomics. ClpX overexpression results in the upregulation of markers of the mitochondrial proteostasis pathway, known as the "mitochondrial unfolded protein response" (UPRmt). Although this pathway is described in detail in Caenorhabditis elegans, it is not clear whether it is conserved in mammals. Therefore, we compared features of the classical nematode UPRmt with our mammalian ClpX-triggered UPRmt dataset. We show that they share the same retrograde mitochondria-to-nucleus signaling pathway that involves the key UPRmt transcription factor CHOP (also known as Ddit3, CEBPZ or GADD153). In conclusion, our data confirm the existence of a mammalian UPRmt that has great similarity to the C. elegans pathway. Furthermore, our results illustrate that ClpX overexpression is a good and simple model to study the underlying mechanisms of the UPRmt in mammalian cells.


Asunto(s)
Endopeptidasa Clp/biosíntesis , Mitocondrias/enzimología , Proteínas Mitocondriales/biosíntesis , Respuesta de Proteína Desplegada/fisiología , Animales , Endopeptidasa Clp/genética , Células HEK293 , Humanos , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
8.
Circulation ; 132(12): 1081-93, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26202810

RESUMEN

BACKGROUND: Sirt7, 1 of the 7 members of the mammalian sirtuin family, promotes oncogenic transformation. Tumor growth and metastasis require fibrotic and angiogenic responses. Here, we investigated the role of Sirt7 in cardiovascular tissue repair process. METHODS AND RESULTS: In wild-type mice, Sirt7 expression increased in response to acute cardiovascular injury, including myocardial infarction and hind-limb ischemia, particularly at the active wound healing site. Compared with wild-type mice, homozygous Sirt7-deficient (Sirt7(-/-)) mice showed susceptibility to cardiac rupture after myocardial infarction, delayed blood flow recovery after hind-limb ischemia, and impaired wound healing after skin injury. Histological analysis showed reduced fibrosis, fibroblast differentiation, and inflammatory cell infiltration in the border zone of infarction in Sirt7(-/-) mice. In vitro, Sirt7(-/-) mouse-derived or Sirt7 siRNA-treated cardiac fibroblasts showed reduced transforming growth factor-ß signal activation and low expression levels of fibrosis-related genes compared with wild-type mice-derived or control siRNA-treated cells. These changes were accompanied by reduction in transforming growth factor receptor I protein. Loss of Sirt7 activated autophagy in cardiac fibroblasts. Transforming growth factor-ß receptor I downregulation induced by loss of Sirt7 was blocked by autophagy inhibitor, and interaction of Sirt7 with protein interacting with protein kinase-Cα was involved in this process. CONCLUSION: Sirt7 maintains transforming growth factor receptor I by modulating autophagy and is involved in the tissue repair process.


Asunto(s)
Fibroblastos/efectos de los fármacos , Corazón/fisiología , Neovascularización Fisiológica/fisiología , Regeneración/fisiología , Transducción de Señal/fisiología , Sirtuinas/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Fibroblastos/patología , Miembro Posterior/irrigación sanguínea , Técnicas In Vitro , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/fisiopatología , ARN Interferente Pequeño/farmacología , Sirtuinas/deficiencia , Sirtuinas/genética , Cicatrización de Heridas/fisiología
9.
Mol Cell Oncol ; 11(1): 2381287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036727

RESUMEN

The nucleolar enzyme sirtuin 7 (SIRT7) promotes cancer progression in certain malignancies, likely in part by controlling ribosome biosynthesis. Recently, we discovered that SIRT7 destabilizes the cyclin dependent kinase inhibitor 2A (CDKN2A, known as ARF) within the nucleolus, aiding cancer progression. We propose that targeting nucleolar SIRT7 offers promise for new anti-cancer therapies.

10.
Oncogene ; 43(14): 993-1006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383727

RESUMEN

The Sirtuin family of NAD+-dependent enzymes assumes a pivotal role in orchestrating adaptive responses to environmental fluctuations and stress stimuli, operating at both genomic and metabolic levels. Within this family, SIRT7 emerges as a versatile player in tumorigenesis, displaying both pro-tumorigenic and tumor-suppressive functions in a context-dependent manner. While other sirtuins, such as SIRT1 and SIRT6, exhibit a similar dual role in cancer, SIRT7 stands out due to distinctive attributes that sharply distinguish it from other family members. Among these are a unique key role in regulation of nucleolar functions, a close functional relationship with RNA metabolism and processing -exceptional among sirtuins- and a complex multienzymatic nature, which provides a diverse range of molecular targets. This review offers a comprehensive overview of the current understanding of the role of SIRT7 in various malignancies, placing particular emphasis on the intricate molecular mechanisms employed by SIRT7 to either stimulate or counteract tumorigenesis. Additionally, it delves into the unique features of SIRT7, discussing their potential and specific implications in tumor initiation and progression, underscoring the promising avenue of targeting SIRT7 for the development of innovative anti-cancer therapies.


Asunto(s)
Neoplasias , Sirtuinas , Humanos , Sirtuinas/fisiología , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias/tratamiento farmacológico , Neoplasias/genética
11.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370824

RESUMEN

Sirtuins, a class of highly conserved histone/protein deacetylases, are heavily implicated in senescence and aging. The regulation of sirtuin proteins is tightly controlled both transcriptionally and translationally and via localization within the cell. While Sirtiun proteins are implicated with aging, how their levels are regulated during aging across cell types and eliciting tissue specific age-related cellular changes is unclear. Here, we demonstrate that SIRT7 is targeted for degradation during senescence and liver aging. To uncover the significance of SIRT7 loss, we performed proteomics analysis and identified a new SIRT7 interactor, the HMG box protein NUCKS1. We found that the NUCKS1 transcription factor is recruited onto chromatin during senescence and this is mediated by SIRT7 loss. Further, depletion of NUCKS1 delayed senescence upon DNA damage leading to reduction of inflammatory gene expression. Examination of NUCKS1 transcriptional regulation during senescence revealed gene targets of transcription factors NFKB1, RELA, and CEBPß. Consistently, in both Sirt7 KO mouse liver and in naturally aged livers, Nucks1 was recruited to chromatin. Further, Nucks1 was bound at promoters and enhancers of age-related genes, including transcription factor Rela, and, moreover, these bound sites had increased accessibility during aging. Overall, our results uncover NUCKS1 as a novel interactor of SIRT7, and show that loss of SIRT7 during senescence and liver aging promotes NUCKS1 chromatin binding to regulate metabolic and inflammatory genes.

12.
Front Cell Dev Biol ; 11: 1281730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38234684

RESUMEN

p53 is a hallmark tumor suppressor due in part to its role in cell cycle progression, DNA damage repair, and cellular apoptosis; its protein activity interrelates with the Sirtuin family of proteins, major regulators of the cellular response to metabolic, oxidative, and genotoxic stress. In the recent years, mammalian Sirtuin 7 (SIRT7) has emerged as a pivotal regulator of p53, fine-tuning its activity in a context dependent manner. SIRT7 is frequently overexpressed in human cancer, yet its precise role in tumorigenesis and whether it involves p53 regulation is insufficiently understood. Depletion of SIRT7 in mice results in impaired embryo development and premature aging. While p53 activity has been suggested to contribute to tissue specific dysfunction in adult Sirt7 -/- mice, whether this also applies during development is currently unknown. By generating SIRT7 and p53 double-knockout mice, here we show that the demise of SIRT7-deficient embryos is not the result of p53 activity. Notably, although SIRT7 is commonly considered an oncogene, SIRT7 haploinsufficiency increases tumorigenesis in p53 knockout mice. Remarkably, in specific human tumors harboring p53 mutation, we identified that SIRT7 low expression correlates with poor patient prognosis. Transcriptomic analysis unveils a previously unrecognized interplay between SIRT7 and p53 in epithelial-to-mesenchymal transition (EMT) and extracellular matrix regulation with major implications for our understanding of embryonic development and tumor progression.

13.
Genes (Basel) ; 12(9)2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34573343

RESUMEN

Sirtuins are key players for maintaining cellular homeostasis and are often deregulated in different human diseases. SIRT7 is the only member of mammalian sirtuins that principally resides in the nucleolus, a nuclear compartment involved in ribosomal biogenesis, senescence, and cellular stress responses. The ablation of SIRT7 induces global genomic instability, premature ageing, metabolic dysfunctions, and reduced stress tolerance, highlighting its critical role in counteracting ageing-associated processes. In this review, we describe the molecular mechanisms employed by SIRT7 to ensure cellular and organismal integrity with particular emphasis on SIRT7-dependent regulation of nucleolar functions.


Asunto(s)
Nucléolo Celular/fisiología , Inestabilidad Genómica , Sirtuinas/fisiología , Estrés Fisiológico , Animales , Nucléolo Celular/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , Mamíferos , Ribosomas/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
14.
Mol Cell Oncol ; 8(3): 1896349, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-34027038

RESUMEN

Release of nucleophosmin (NPM) from nucleoli following stress promotes rapid stabilization of the tumor suppressor p53 (TP53, best known as p53). Nucleoplasmic NPM binds to the ubiquitin ligase mouse double minute 2 (MDM2) and prevents MDM2-dependent p53 degradation. We recently demonstrated that sirtuin 7 (SIRT7) activates this pathway by directly deacetylating NPM following ultraviolet irradiation, indicating tumor-suppressive functions of SIRT7.

15.
Front Cell Dev Biol ; 9: 639162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124033

RESUMEN

Idiopathic pulmonary fibrosis (IPF) represents the most aggressive form of pulmonary fibrosis (PF) and is a highly debilitating disorder with a poorly understood etiology. The lung epithelium seems to play a critical role in the initiation and progression of the disease. A repeated injury of lung epithelial cells prompts type II alveolar cells to secrete pro-fibrotic cytokines, which induces differentiation of resident mesenchymal stem cells into myofibroblasts, thus promoting aberrant deposition of extracellular matrix (ECM) and formation of fibrotic lesions. Reactivation of developmental pathways such as the Wnt-ß-catenin signaling cascade in lung epithelial cells plays a critical role in this process, but the underlying mechanisms are still enigmatic. Here, we demonstrate that the membrane-associated protein NUMB is required for pathological activation of ß-catenin signaling in lung epithelial cells following bleomycin-induced injury. Importantly, depletion of Numb and Numblike reduces accumulation of fibrotic lesions, preserves lung functions, and increases survival rates after bleomycin treatment of mice. Mechanistically, we demonstrate that NUMB interacts with casein kinase 2 (CK2) and relies on CK2 to activate ß-catenin signaling. We propose that pharmacological inhibition of NUMB signaling may represent an effective strategy for the development of novel therapeutic approaches against PF.

16.
Antioxidants (Basel) ; 10(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073102

RESUMEN

Giant cell arteritis (GCA), medium and large vessel granulomatous vasculitis affecting the elderly, is characterized by a multitude of vascular complications, including venous thrombosis, myocardial infraction and stroke. The formation of granulomatous infiltrates and the enhanced accumulation of proinflammatory cytokines are typical features of this condition. The GCA pathogenesis remains largely unknown, but recent studies have suggested the involvement of oxidative stress, mainly sustained by an enhanced reactive oxygen species (ROS) production by immature neutrophils. On this basis, in the present study, we intended to evaluate, in GCA patients, the presence of systemic oxidative stress and possible alterations in the expression level of nuclear sirtuins, enzymes involved in the inhibition of inflammation and oxidative stress. Thirty GCA patients were included in the study and compared to 30 healthy controls in terms of leukocyte ROS production, oxidative stress and SIRT1 expression. Our results clearly indicated a significant increase (p < 0.05) both in the ROS levels in the leukocyte fractions and plasma oxidative stress markers (lipid peroxidation and total antioxidant capacity) in the GCA patients compared to the healthy controls. In PBMCs from the GCA patients, a significant decrease in SIRT1 expression (p < 0.05) but not in SIRT6 and SIRT7 expression was found. Taken together, our preliminary findings indicate that, in GCA patients, plasma oxidative stress is paralleled by a reduced SIRT1 expression in PBMC. Further studies are needed to highlight if and how these alterations contribute to GCA pathogenesis.

17.
Stem Cell Reports ; 16(9): 2089-2098, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34450038

RESUMEN

Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4. Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , ADN Helicasas/genética , Músculo Esquelético/fisiología , Regeneración , Células Madre/citología , Células Madre/metabolismo , Animales , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Biológicos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo
18.
Cell Rep ; 31(7): 107652, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433961

RESUMEN

Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration.


Asunto(s)
Epigénesis Genética/genética , Músculo Esquelético/metabolismo , Necroptosis/genética , Humanos
19.
Theranostics ; 10(14): 6467-6482, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32483464

RESUMEN

Background: Tetraspanins constitute a family of transmembrane spanning proteins that function mainly by organizing the plasma membrane into micro-domains. CD82, a member of tetraspanins, is a potent inhibitor of cancer metastasis in numerous malignancies. CD82 is a highly glycosylated protein, however, it is still unknown whether and how this post-translational modification affects CD82 function and cancer metastasis. Methods: The glycosylation of CD82 profiles are checked in the paired human ovarian primary and metastatic cancer tissues. The functional studies on the various glycosylation sites of CD82 are performed in vitro and in vivo. Results: We demonstrate that CD82 glycosylation at Asn157 is necessary for CD82-mediated inhibition of ovarian cancer cells migration and metastasis in vitro and in vivo. Mechanistically, we discover that CD82 glycosylation is pivotal to disrupt integrin α5ß1-mediated cellular adhesion to the abundant extracellular matrix protein fibronectin. Thereby the glycosylated CD82 inhibits the integrin signaling pathway responsible for the induction of the cytoskeleton rearrangements required for cellular migration. Furthermore, we reveal that the glycosyltransferase MGAT3 is responsible for CD82 glycosylation in ovarian cancer cells. Metastatic ovarian cancers express reduced levels of MGAT3 which in turn may result in impaired CD82 glycosylation. Conclusions: Our work implicates a pathway for ovarian cancers metastasis regulation via MGAT3 mediated glycosylation of tetraspanin CD82 at asparagine 157.


Asunto(s)
Integrinas/metabolismo , Proteína Kangai-1/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias Ováricas , Animales , Asparagina/química , Línea Celular Tumoral , Membrana Celular/metabolismo , Exosomas/metabolismo , Femenino , Glicosilación , Humanos , Ratones , Metástasis de la Neoplasia , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal , Tetraspaninas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Sci Adv ; 6(30): eaaz2590, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32832656

RESUMEN

Sirtuins are key players of metabolic stress response. Originally described as deacetylases, some sirtuins also exhibit poorly understood mono-adenosine 5'-diphosphate (ADP)-ribosyltransferase (mADPRT) activity. We report that the deacetylase SirT7 is a dual sirtuin, as it also features auto-mADPRT activity. SirT7 mADPRT occurs at a previously undefined active site, and its abrogation alters SirT7 chromatin distribution. We identify an epigenetic pathway by which ADP-ribosyl-SirT7 is recognized by the ADP-ribose reader mH2A1.1 under glucose starvation, inducing SirT7 relocalization to intergenic regions. SirT7 promotes mH2A1 enrichment in a subset of nearby genes, many of them involved in second messenger signaling, resulting in their specific up- or down-regulation. The expression profile of these genes under calorie restriction is consistently abrogated in SirT7-deficient mice, resulting in impaired activation of autophagy. Our work provides a novel perspective on sirtuin duality and suggests a role for SirT7/mH2A1.1 axis in glucose homeostasis and aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA