Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res ; 16(1): R10, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24451168

RESUMEN

INTRODUCTION: The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. METHODS: FVB-huHER2 mice were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. RESULTS: Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-γ production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. CONCLUSIONS: Anti-huHER2 antibodies elicited in the tolerant host exert antitumor activity.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Neoplasias Mamarias Animales/inmunología , Receptor ErbB-2/inmunología , Vacunas de ADN/inmunología , Traslado Adoptivo , Animales , Anticuerpos/sangre , Formación de Anticuerpos/inmunología , Línea Celular Tumoral , Femenino , Humanos , Interferón gamma/biosíntesis , Interleucina-12/inmunología , Células MCF-7 , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/prevención & control , Ratones , Ratones Transgénicos , Receptor ErbB-2/genética , Bazo/citología , Bazo/trasplante
2.
Cancers (Basel) ; 11(4)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979001

RESUMEN

(1) Background: Human epidermal growth factor receptor 2 (HER2)/neu-driven carcinogenesis is delayed by preventive vaccines able to elicit autochthonous antibodies against HER2/neu. Since cooperation between different receptor tyrosine kinases (RTKs) can occur in human as well as in experimental tumors, we investigated the set-up of DNA and cell vaccines to elicit an antibody response co-targeting two RTKs: HER2/neu and the Insulin-like Growth Factor Receptor-1 (IGF1R). (2) Methods: Plasmid vectors carrying the murine optimized IGF1R sequence or the human IGF1R isoform were used as electroporated DNA vaccines. IGF1R plasmids were transfected in allogeneic HER2/neu-positive IL12-producing murine cancer cells to obtain adjuvanted cell vaccines co-expressing HER2/neu and IGF1R. Vaccination was administered in the preneoplastic stage to mice prone to develop HER2/neu-driven, IGF1R-dependent rhabdomyosarcoma. (3) Results: Electroporated DNA vaccines for murine IGF1R did not elicit anti-mIGF1R antibodies, even when combined with Treg-depletion and/or IL12, while DNA vaccines carrying the human IGF1R elicited antibodies recognizing only the human IGF1R isoform. Cell vaccines co-expressing HER2/neu and murine or human IGF1R succeeded in eliciting antibodies recognizing the murine IGF1R isoform. Cell vaccines co-targeting HER2/neu and murine IGF1R induced the highest level of anti-IGF1R antibodies and nearly significantly delayed the onset of spontaneous rhabdomyosarcomas. (4) Conclusions: Multi-engineered adjuvanted cancer cell vaccines can break the tolerance towards a highly tolerized RTK, such as IGF1R. Cell vaccines co-targeting HER2/neu and IGF1R elicited low levels of specific antibodies that slightly delayed onset of HER2/neu-driven, IGF1R-dependent tumors.

3.
Oncoimmunology ; 7(8): e1465164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30221061

RESUMEN

This study evaluated the effects of combining an OX40 agonistic antibody (aOX40) with a cell vaccine targeting HER2/neu, called "Triplex". Such HER2/neu cell vaccine included two biological adjuvants (interleukin 12 (IL12) and allogeneic histocompatibility antigens) and was previously found able to prevent autochthonous HER2/neu-driven mammary carcinogenesis. Timing of aOX40 administration, concomitantly or after cell vaccination, gave opposite results. Unexpectedly, vaccine efficacy was hampered by concomitant OX40 triggering. Such decreased immunoprevention was likely due to a reduced induction of anti-HER2/neu antibodies and to a higher level of Treg activation. On the contrary, aOX40 administration after the completion of vaccination slightly but significantly increased immunopreventive vaccine efficacy, and led to increased production of GM-CSF and IL10. In conclusion, OX40 triggering can either impair or ameliorate immunoprevention of HER2/neu-driven mammary carcinogenesis depending on the schedule of aOX40 administration.

4.
Vaccine ; 29(29-30): 4690-7, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21569812

RESUMEN

Main obstacles to cancer vaccine efficacy are pre-existing antigenic load and immunoescape mechanisms, including tolerance against self tumor-associated antigens. Here we explored the role of tolerance in an antimetastatic vaccine approach based on dendritic cell-tumor cell (DC-TC) hybrids, thanks to the comparison between BALB-neuT mice, transgenic for and tolerant to rat HER-2/neu, with their non-tolerant strain of origin BALB/c. Allogeneic DC-TC hybrid vaccine displayed a high antimetastatic activity in non-tolerant mice, but was far less effective in tolerant mice, even with intensified vaccine schedule. Tolerant BALB-neuT mice revealed a reduced ability to mount polarized Th1 responses. A further attempt to increase the antimetastatic activity by using LPS-matured DC hybrids failed. Allogeneic LPS-matured DC-TC hybrids induced high IFN-γ levels, but concomitantly also the highest production of IL-4 and IL-10 suggesting activation of mechanisms sustaining regulatory cells able to blunt vaccine efficacy. Our data in tolerant versus non-tolerant hosts suggest that clinical translation of effective DC-based strategies could benefit from more extensive investigations in tolerant transgenic models.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Células Híbridas/inmunología , Neoplasias Pulmonares/inmunología , Metástasis de la Neoplasia/prevención & control , Receptor ErbB-2/inmunología , Animales , Femenino , Tolerancia Inmunológica , Pulmón/patología , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Metástasis de la Neoplasia/inmunología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA