Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(23): 235101, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905665

RESUMEN

In this study, we discovered a turbulence transition in a large helical device. The turbulence level and turbulence-driven energy transport decrease to a specific transition density and increase above it. The ruling turbulences below and above the transition density were ion-temperature gradient (ITG) and resistive-interchange (RI) turbulences, consistent with the predictions of gyrokinetic theory and two-fluid MHD model, respectively. Isotope experiments on hydrogen (H) and deuterium (D) clarified the role of transitions. In the ITG regime, turbulence levels and energy transport were comparable in the H and D plasmas. In contrast, in the RI regime, they were clearly suppressed in the D plasma. The results provide crucial knowledge for understanding isotope effects and future optimization of stellarator and heliotron devices.

3.
Phys Rev Lett ; 90(20): 205001, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12785901

RESUMEN

Sawtooth oscillations have been observed in current-carrying helical plasmas by using electron-cyclotron-emission diagnostics in the Large Helical Device. The plasma current, which is driven by neutral beam injection, reduces the beta threshold of the sawtooth oscillation. When the central q value is increased due to the plasma current, the core region crashes, and, when it is decreased, the edge region crashes annularly. Observed rapid mixture of the plasma in the limited region suggests that these sawtooth crashes are reconnection phenomena. Unlike previous experiments, no precursor oscillation has been observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA