Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc ; 42(10): 3358-3364, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25821260

RESUMEN

We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes.

2.
Heliyon ; 6(6): e04214, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32613109

RESUMEN

As technology has improved in recent years, it has become possible to create new valuable functions by combining various devices and sensors in a network. This concept is referred to as the Internet of Things (IoT), and predictive maintenance is a new valuable function associated with the IoT. In large-scale experimental facilities with many researchers, it is not desirable that experiments cannot be performed due to sudden failure of equipment. For this reason, it is important to predict the failure in advance based on the measurement results of sensors and to perform repairs in a planned manner. On the Q-shu University experiment with steady-state spherical tokamak (QUEST) large experimental device, it is necessary to drive a large current of 50 kA, and the diagnosis of its power line deterioration is well performed as predictive maintenance through the evaluation of its contact resistances of several micro ohms order on the network. In addition, as an example of the IoT, mechanisms to assist safe operation, such as a sound alarm system and an entrance management system, are built by sharing experimental information between devices via the network.

3.
Artículo en Inglés | MEDLINE | ID: mdl-21384725

RESUMEN

Millimeter-wave components were re-examined for high power (Mega-Watt) and steady-state (greater than one hour) operation. Some millimeter-wave components, including waveguide joints, vacuum pumping sections, power monitors, sliding waveguides, and injection windows, have been improved for high power CW (Continuous Waves) transmission. To improve transmission efficiency, information about the wave phase and mode content of high power millimeter-waves propagating in corrugated waveguides, which are difficult to measure directly, were obtained by a newly developed method based on retrieved phase information. To optimize the plasma heating efficiency, a proof-of-principle study of the injection polarization feedback control was performed in the low power test stand.

4.
Rev Sci Instrum ; 82(11): 113509, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22128977

RESUMEN

In magnetized plasmas, the presence of a significant number of energetic electrons has been observed but quantitative characteristics of these electrons are proving difficult to investigate. A Langmuir probe offers a means to provide quantitative measurement of these energetic electrons that takes into account electron emissions (secondary electron emission and electron reflection) from the probe tips and sheath expansion around the probe tips caused by a considerable negative potential. In this paper, these effects are experimentally confirmed and an analytical means to measure energetic electron characteristics are proposed. An analysis of plasmas produced by a high frequency wave is then applied leading to the successful detection of an asymmetric flow of energetic electrons. The estimated electron temperature and current density were approximately 4-5 keV and 2-3 kA/m(2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA