Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 49(5): 2684-2699, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561188

RESUMEN

We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.


Asunto(s)
Adenosina/análogos & derivados , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Adenosina/metabolismo , Codón , Codón de Terminación , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo
2.
Nat Chem Biol ; 15(7): 757, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953035

RESUMEN

In the version of this article originally published, the values on the y axis of Fig. 6d were incorrect. They should be 0.00, 0.02, 0.04, 0.06 and 0.08 instead of the previous 0.00, 0.04, 0.08 and 0.12. The error has been corrected in the HTML and PDF versions of this paper.

3.
Nat Chem Biol ; 14(6): 618-626, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769736

RESUMEN

Our ability to directly relate results from test-tube biochemical experiments to the kinetics in living cells is very limited. Here we present experimental and analytical tools to directly study the kinetics of fast biochemical reactions in live cells. Dye-labeled molecules are electroporated into bacterial cells and tracked using super-resolved single-molecule microscopy. Trajectories are analyzed by machine-learning algorithms to directly monitor transitions between bound and free states. In particular, we measure the dwell time of tRNAs on ribosomes, and hence achieve direct measurements of translation rates inside living cells at codon resolution. We find elongation rates with tRNAPhe that are in perfect agreement with previous indirect estimates, and once fMet-tRNAfMet has bound to the 30S ribosomal subunit, initiation of translation is surprisingly fast and does not limit the overall rate of protein synthesis. The experimental and analytical tools for direct kinetics measurements in live cells have applications far beyond bacterial protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia/metabolismo , Algoritmos , Codón , Colorantes/química , Electroporación , Escherichia coli/metabolismo , Colorantes Fluorescentes , Cinética , Aprendizaje Automático , Microscopía Fluorescente , Microscopía por Video , ARN Mensajero , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Imagen Individual de Molécula
4.
Proc Natl Acad Sci U S A ; 113(48): 13744-13749, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27837019

RESUMEN

Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aa-tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP are selected in a step where the accuracy increases linearly with increasing aa-tRNA affinity to EF-Tu. Then, following dissociation of EF-Tu·GDP from the ribosome, the accuracy is further increased in a second and apparently EF-Tu-independent step. Our findings identify the molecular basis of proofreading in bacteria, highlight the pivotal role of EF-Tu for fast and accurate protein synthesis, and illustrate the importance of multistep substrate selection in intracellular processing of genetic information.


Asunto(s)
Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Ribosomas/genética , Aminoacil-ARNt Sintetasas/genética , Código Genético/genética , Guanosina Difosfato/metabolismo , Mutación , Conformación de Ácido Nucleico , ARN Mensajero/genética , Factores Complejos Ternarios/genética
5.
RNA ; 22(6): 896-904, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27090284

RESUMEN

The ribosome uses initial and proofreading selection of aminoacyl-tRNAs for accurate protein synthesis. Anomalously high initial misreading in vitro of near-cognate codons by tRNA(His) and tRNA(Glu) suggested potential error hotspots in protein synthesis, but in vivo data suggested their partial neutralization. To clarify the role of proofreading in this error reduction, we varied the Mg(2+) ion concentration to calibrate the total accuracy of our cell-free system to that in the living Escherichia coli cell. We found the total accuracy of tRNA selection in our system to vary by five orders of magnitude depending on tRNA identity, type of mismatch, and mismatched codon position. Proofreading and initial selection were positively correlated at high, but uncorrelated at low initial selection, suggesting hyperactivated proofreading as a means to neutralize potentially disastrous initial selection errors.


Asunto(s)
Código Genético , Biosíntesis de Proteínas , ARN de Transferencia/química , Codón
6.
Proc Natl Acad Sci U S A ; 112(31): 9602-7, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195797

RESUMEN

We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200-80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNA(His) and, as also seen in vivo, Glu-tRNA(Glu). We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here.


Asunto(s)
Bacterias/metabolismo , Codón/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Secuencia de Bases , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Datos de Secuencia Molecular , ARN Mensajero/metabolismo
7.
RNA ; 20(5): 632-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24671767

RESUMEN

There is evidence that tRNA bodies have evolved to reduce differences between aminoacyl-tRNAs in their affinity to EF-Tu. Here, we study the kinetics of incorporation of L-amino acids (AAs) Phe, Ala allyl-glycine (aG), methyl-serine (mS), and biotinyl-lysine (bK) using a tRNA(Ala)-based body (tRNA(AlaB)) with a high affinity for EF-Tu. Results are compared with previous data on the kinetics of incorporation of the same AAs using a tRNA(PheB) body with a comparatively low affinity for EF-Tu. All incorporations exhibited fast and slow phases, reflecting the equilibrium fraction of AA-tRNA in active ternary complex with EF-Tu:GTP before the incorporation reaction. Increasing the concentration of EF-Tu increased the amplitude of the fast phase and left its rate unaltered. This allowed estimation of the affinity of each AA-tRNA to EF-Tu:GTP during translation, showing about a 10-fold higher EF-Tu affinity for AA-tRNAs formed from the tRNA(AlaB) body than from the tRNA(PheB) body. At ∼1 µM EF-Tu, tRNA(AlaB) conferred considerably faster incorporation kinetics than tRNA(PheB), especially in the case of the bulky bK. In contrast, the swap to the tRNA(AlaB) body did not increase the fast phase fraction of N-methyl-Phe incorporation, suggesting that the slow incorporation of N-methyl-Phe had a different cause than low EF-Tu:GTP affinity. The total time for AA-tRNA release from EF-Tu:GDP, accommodation, and peptidyl transfer on the ribosome was similar for the tRNA(AlaB) and tRNA(PheB) bodies. We conclude that a tRNA body with high EF-Tu affinity can greatly improve incorporation of unnatural AAs in a potentially generalizable manner.


Asunto(s)
Escherichia coli/genética , Factor Tu de Elongación Peptídica/genética , Aminoacil-ARN de Transferencia/genética , Ribosomas/genética , Aminoácidos/genética , Guanosina Trifosfato/genética , Cinética , Biosíntesis de Proteínas
8.
Proc Natl Acad Sci U S A ; 108(1): 79-84, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21169502

RESUMEN

We studied the pH-dependence of ribosome catalyzed peptidyl transfer from fMet-tRNA(fMet) to the aa-tRNAs Phe-tRNA(Phe), Ala-tRNA(Ala), Gly-tRNA(Gly), Pro-tRNA(Pro), Asn-tRNA(Asn), and Ile-tRNA(Ile), selected to cover a large range of intrinsic pK(a)-values for the α-amino group of their amino acids. The peptidyl transfer rates were different at pH 7.5 and displayed different pH-dependence, quantified as the pH-value, pK(a)(obs), at which the rate was half maximal. The pK(a)(obs)-values were downshifted relative to the intrinsic pK(a)-value of aa-tRNAs in bulk solution. Gly-tRNA(Gly) had the smallest downshift, while Ile-tRNA(Ile) and Ala-tRNA(Ala) had the largest downshifts. These downshifts correlate strongly with molecular dynamics (MD) estimates of the downshifts in pK(a)-values of these aa-tRNAs upon A-site binding. Our data show the chemistry of peptide bond formation to be rate limiting for peptidyl transfer at pH 7.5 in the Gly and Pro cases and indicate rate limiting chemistry for all six aa-tRNAs.


Asunto(s)
Péptidos/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Biológicos , Simulación de Dinámica Molecular , Estructura Molecular , Biosíntesis de Proteínas/genética , ARN de Transferencia de Metionina/metabolismo
9.
J Am Chem Soc ; 134(43): 17955-62, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23057558

RESUMEN

Translations with unnatural amino acids (AAs) are generally inefficient, and kinetic studies of their incorporations from transfer ribonucleic acids (tRNAs) are few. Here, the incorporations of small and large, non-N-alkylated, unnatural l-AAs into dipeptides were compared with those of natural AAs using quench-flow techniques. Surprisingly, all incorporations occurred in two phases: fast then slow, and the incorporations of unnatural AA-tRNAs proceeded with rates of fast and slow phases similar to those for natural Phe-tRNA(Phe). The slow phases were much more pronounced with unnatural AA-tRNAs, correlating with their known inefficient incorporations. Importantly, even for unnatural AA-tRNAs the fast phases could be made dominant by using high EF-Tu concentrations and/or lower reaction temperature, which may be generally useful for improving incorporations. Also, our observed effects of EF-Tu concentration on the fraction of the fast phase of incorporation enabled direct assay of the affinities of the AA-tRNAs for EF-Tu during translation. Our unmodified tRNA(Phe) derivative adaptor charged with a large unnatural AA, biotinyl-lysine, had a very low affinity for EF-Tu:GTP, while the small unnatural AAs on the same tRNA body had essentially the same affinities to EF-Tu:GTP as natural AAs on this tRNA, but still 2-fold less than natural Phe-tRNA(Phe). We conclude that the inefficiencies of unnatural AA-tRNA incorporations were caused by inefficient delivery to the ribosome by EF-Tu, not slow peptide bond formation on the ribosome.


Asunto(s)
Péptidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Cinética , Péptidos/síntesis química , Péptidos/química , Aminoacil-ARN de Transferencia/química
10.
Nat Struct Mol Biol ; 25(3): 208-216, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459784

RESUMEN

Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Anticodón , Codón , Metilación , Aminoacil-ARN de Transferencia/metabolismo
11.
Nat Struct Mol Biol ; 23(2): 110-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26751643

RESUMEN

N(6)-methylation of adenosine (forming m(6)A) is the most abundant post-transcriptional modification within the coding region of mRNA, but its role during translation remains unknown. Here, we used bulk kinetic and single-molecule methods to probe the effect of m(6)A in mRNA decoding. Although m(6)A base-pairs with uridine during decoding, as shown by X-ray crystallographic analyses of Thermus thermophilus ribosomal complexes, our measurements in an Escherichia coli translation system revealed that m(6)A modification of mRNA acts as a barrier to tRNA accommodation and translation elongation. The interaction between an m(6)A-modified codon and cognate tRNA echoes the interaction between a near-cognate codon and tRNA, because delay in tRNA accommodation depends on the position and context of m(6)A within codons and on the accuracy level of translation. Overall, our results demonstrate that chemical modification of mRNA can change translational dynamics.


Asunto(s)
Adenosina/análogos & derivados , Escherichia coli/genética , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Thermus thermophilus/genética , Adenosina/análisis , Adenosina/genética , Codón , Cristalografía por Rayos X , Escherichia coli/química , ARN Bacteriano/química , ARN Mensajero/química , ARN de Transferencia/química , Thermus thermophilus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA