Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 77(1): 51-66.e8, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784357

RESUMEN

Spatially and functionally distinct domains of heterochromatin and euchromatin play important roles in the maintenance of chromosome stability and regulation of gene expression, but a comprehensive knowledge of their composition is lacking. Here, we develop a strategy for the isolation of native Schizosaccharomyces pombe heterochromatin and euchromatin fragments and analyze their composition by using quantitative mass spectrometry. The shared and euchromatin-specific proteomes contain proteins involved in DNA and chromatin metabolism and in transcription, respectively. The heterochromatin-specific proteome includes all proteins with known roles in heterochromatin formation and, in addition, is enriched for subsets of nucleoporins and inner nuclear membrane (INM) proteins, which associate with different chromatin domains. While the INM proteins are required for the integrity of the nucleolus, containing ribosomal DNA repeats, the nucleoporins are required for aggregation of heterochromatic foci and epigenetic inheritance. The results provide a comprehensive picture of heterochromatin-associated proteins and suggest a role for specific nucleoporins in heterochromatin function.


Asunto(s)
Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Cromatina/metabolismo , Heterocromatina/metabolismo , ADN Ribosómico/metabolismo , Epigénesis Genética/fisiología , Eucromatina/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteómica/métodos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética/fisiología
2.
Nature ; 560(7719): 504-508, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30051891

RESUMEN

Histone H3 lysine 9 methylation (H3K9me) mediates heterochromatic gene silencing and is important for genome stability and the regulation of gene expression1-4. The establishment and epigenetic maintenance of heterochromatin involve the recruitment of H3K9 methyltransferases to specific sites on DNA, followed by the recognition of pre-existing H3K9me by the methyltransferase and methylation of proximal histone H35-11. This positive feedback loop must be tightly regulated to prevent deleterious epigenetic gene silencing. Extrinsic anti-silencing mechanisms involving histone demethylation or boundary elements help to limit the spread of inappropriate H3K9me12-15. However, how H3K9 methyltransferase activity is locally restricted or prevented from initiating random H3K9me-which would lead to aberrant gene silencing and epigenetic instability-is not fully understood. Here we reveal an autoinhibited conformation in the conserved H3K9 methyltransferase Clr4 (also known as Suv39h) of the fission yeast Schizosaccharomyces pombe that has a critical role in preventing aberrant heterochromatin formation. Biochemical and X-ray crystallographic data show that an internal loop in Clr4 inhibits the catalytic activity of this enzyme by blocking the histone H3K9 substrate-binding pocket, and that automethylation of specific lysines in this loop promotes a conformational switch that enhances the H3K9me activity of Clr4. Mutations that are predicted to disrupt this regulation lead to aberrant H3K9me, loss of heterochromatin domains and inhibition of growth, demonstrating the importance of the intrinsic inhibition and auto-activation of Clr4 in regulating the deposition of H3K9me and in preventing epigenetic instability. Conservation of the Clr4 autoregulatory loop in other H3K9 methyltransferases and the automethylation of a corresponding lysine in the human SUV39H2 homologue16 suggest that the mechanism described here is broadly conserved.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética , Histona Metiltransferasas/química , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Evolución Molecular , Silenciador del Gen , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Humanos , Metilación , Conformación Proteica
3.
Mol Cell ; 63(2): 191-205, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27397687

RESUMEN

Small-RNA (sRNA)-guided transcriptional gene silencing by Argonaute (Ago)-containing complexes is fundamental to genome integrity and epigenetic inheritance. The RNA cleavage ("Slicer") activity of Argonaute has been implicated in both sRNA maturation and target RNA cleavage. Typically, Argonaute slices and releases the passenger strand of duplex sRNA to generate active silencing complexes, but it remains unclear whether slicing of target nascent RNAs, or other RNAi components, also contributes to downstream transcriptional silencing. Here, we develop a strategy for loading the fission yeast Ago1 with a single-stranded sRNA guide, which bypasses the requirement for slicer activity in generation of active silencing complexes. We show that slicer-defective Ago1 can mediate secondary sRNA generation, H3K9 methylation, and silencing similar to or better than wild-type and associates with chromatin more efficiently. The results define an ancient and minimal sRNA-mediated chromatin silencing mechanism, which resembles the germline-specific sRNA-dependent transcriptional silencing pathways in Drosophila and mammals.


Asunto(s)
Proteínas Argonautas/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Interferencia de ARN , ARN de Hongos/metabolismo , ARN Interferente Pequeño/biosíntesis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Argonautas/genética , Metilación de ADN , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , ARN de Hongos/genética , ARN Interferente Pequeño/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética
4.
Nature ; 547(7664): 463-467, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28682306

RESUMEN

Heterochromatic DNA domains have important roles in the regulation of gene expression and maintenance of genome stability by silencing repetitive DNA elements and transposons. From fission yeast to mammals, heterochromatin assembly at DNA repeats involves the activity of small noncoding RNAs (sRNAs) associated with the RNA interference (RNAi) pathway. Typically, sRNAs, originating from long noncoding RNAs, guide Argonaute-containing effector complexes to complementary nascent RNAs to initiate histone H3 lysine 9 di- and trimethylation (H3K9me2 and H3K9me3, respectively) and the formation of heterochromatin. H3K9me is in turn required for the recruitment of RNAi to chromatin to promote the amplification of sRNA. Yet, how heterochromatin formation, which silences transcription, can proceed by a co-transcriptional mechanism that also promotes sRNA generation remains paradoxical. Here, using Clr4, the fission yeast Schizosaccharomyces pombe homologue of mammalian SUV39H H3K9 methyltransferases, we design active-site mutations that block H3K9me3, but allow H3K9me2 catalysis. We show that H3K9me2 defines a functionally distinct heterochromatin state that is sufficient for RNAi-dependent co-transcriptional gene silencing at pericentromeric DNA repeats. Unlike H3K9me3 domains, which are transcriptionally silent, H3K9me2 domains are transcriptionally active, contain modifications associated with euchromatic transcription, and couple RNAi-mediated transcript degradation to the establishment of H3K9me domains. The two H3K9me states recruit reader proteins with different efficiencies, explaining their different downstream silencing functions. Furthermore, the transition from H3K9me2 to H3K9me3 is required for RNAi-independent epigenetic inheritance of H3K9me domains. Our findings demonstrate that H3K9me2 and H3K9me3 define functionally distinct chromatin states and uncover a mechanism for the formation of transcriptionally permissive heterochromatin that is compatible with its broadly conserved role in sRNA-mediated genome defence.


Asunto(s)
Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Interferencia de ARN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen/efectos de los fármacos , Heterocromatina/química , N-Metiltransferasa de Histona-Lisina , Ácidos Hidroxámicos/farmacología , Metilación/efectos de los fármacos , Metiltransferasas/metabolismo , Mutación , Proteínas Represoras/metabolismo , Schizosaccharomyces/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética/efectos de los fármacos
5.
Mol Cell ; 53(2): 262-76, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24374313

RESUMEN

Endogenous small interfering RNAs (siRNAs) and other classes of small RNA provide the specificity signals for silencing of transposons and repeated DNA elements at the posttranscriptional and transcriptional levels. However, the determinants that define an siRNA-producing region or control the silencing function of siRNAs are poorly understood. Here we show that convergent antisense transcription and availability of the Dicer ribonuclease are the key determinants for primary siRNA generation. Surprisingly, Dicer makes dual contributions to heterochromatin formation, promoting histone H3 lysine 9 methylation independently of its catalytic activity, in addition to its well-known role in catalyzing siRNA generation. Furthermore, sequences in the 3' UTR of an mRNA-coding gene inhibit the ability of siRNAs to promote heterochromatin formation, providing another layer of control that prevents the silencing of protein-coding RNAs. Our results reveal distinct mechanisms that limit siRNA generation to centromeric DNA repeats and prevent spurious siRNA-mediated silencing at euchromatic loci.


Asunto(s)
Heterocromatina/metabolismo , ARN Interferente Pequeño/fisiología , Schizosaccharomyces/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Regulación de la Expresión Génica , Histonas/metabolismo , Metilación , Poliadenilación , Señales de Poliadenilación de ARN 3' , Interferencia de ARN , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Ribonucleasa III/fisiología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología
6.
Genes Dev ; 24(17): 1927-38, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20810649

RESUMEN

The evolutionarily conserved mRNA export receptor Mex67/NXF1 associates with mRNAs through its adaptor, Yra1/REF, allowing mRNA ribonucleoprotein (mRNP) exit through nuclear pores. However, alternate adaptors should exist, since Yra1 is dispensable for mRNA export in Drosophila and Caenorhabditis elegans. Here we report that Mex67 interacts directly with Nab2, an essential shuttling mRNA-binding protein required for export. We further show that Yra1 enhances the interaction between Nab2 and Mex67, and becomes dispensable in cells overexpressing Nab2 or Mex67. These observations appoint Nab2 as a potential adaptor for Mex67, and define Yra1/REF as a cofactor stabilizing the adaptor-receptor interaction. Importantly, Yra1 ubiquitination by the E3 ligase Tom1 promotes its dissociation from mRNP before export. Finally, loss of perinuclear Mlp proteins suppresses the growth defects of Tom1 and Yra1 ubiquitination mutants, suggesting that Tom1-mediated dissociation of Yra1 from Nab2-bound mRNAs is part of a surveillance mechanism at the pore, ensuring export of mature mRNPs only.


Asunto(s)
ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
Mol Cell ; 35(2): 137-8, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647509

RESUMEN

In a recent issue of Molecular Cell, Bonetti et al. (2009) identify in the yeast Saccharomyces cerevisiae that the molecular activities that generate 3' overhangs at telomeric DNA ends are the same as those that resect DNA at double-strand breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Telómero/genética , Reparación del ADN/fisiología , ADN de Hongos/química , ADN de Hongos/genética , Modelos Genéticos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/química
8.
Mol Cell ; 32(4): 465-77, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19026778

RESUMEN

Vertebrate telomeres are transcribed into telomeric repeat-containing RNA (TERRA) that associates with telomeres and may be important for telomere function. Here, we demonstrate that telomeres are also transcribed in Saccharomyces cerevisiae by RNA polymerase II (RNAPII). Yeast TERRA is polyadenylated and stabilized by Pap1p and regulated by the 5' to 3' exonuclease, Rat1p. rat1-1 mutant cells accumulate TERRA and harbor short telomeres because of defects in telomerase-mediated telomere elongation. Overexpression of RNaseH overcomes telomere elongation defects in rat1-1 cells, indicating that RNA/DNA hybrids inhibit telomerase function at chromosome ends in these mutants. Thus, telomeric transcription combined with Rat1p-dependent TERRA degradation is important for regulating telomerase in yeast. Telomere transcription is conserved in different kingdoms of the eukaryotic domain.


Asunto(s)
Exonucleasas/metabolismo , Exorribonucleasas/metabolismo , ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Exonucleasas/genética , Exorribonucleasas/genética , Modelos Biológicos , ARN/metabolismo , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética
9.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496583

RESUMEN

Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.

10.
EMBO Rep ; 12(6): 587-93, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21525956

RESUMEN

Telomeric repeat-containing RNA (TERRA) has been implicated in the control of heterochromatin and telomerase. We demonstrate that yeast TERRA is regulated by telomere-binding proteins in a chromosome-end-specific manner that is dependent on subtelomeric repetitive DNA elements. At telomeres that contain only X-elements, the Rap1 carboxy-terminal domain recruits the Sir2/3/4 and Rif1/2 complexes to repress transcription in addition to promoting Rat1-nuclease-dependent TERRA degradation. At telomeres that contain Y' elements, however, Rap1 represses TERRA through recruitment of Rif1 and Rif2. Our work emphasizes the importance of subtelomeric DNA in the control of telomeric protein composition and telomere transcription.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Mutación/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética
11.
ACS Nano ; 16(4): 5660-5671, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35357116

RESUMEN

Programmable control of gene expression via nuclease-null Cas9 fusion proteins has enabled the engineering of cellular behaviors. Here, both transcriptional and epigenetic gene activation via synthetic mRNA and lipid nanoparticle delivery was demonstrated in vivo. These highly efficient delivery strategies resulted in high levels of activation in multiple tissues. Finally, we demonstrate durable gene activation in vivo via transient delivery of a single dose of a gene activator that combines VP64, p65, and HSF1 with a SWI/SNF chromatin remodeling complex component SS18, representing an important step toward gene-activation-based therapeutics. This induced sustained gene activation could be inhibited via mRNA-encoded AcrIIA4, further improving the safety profile of this approach.


Asunto(s)
Sistemas CRISPR-Cas , Liposomas , Activación Transcripcional , ARN Mensajero/genética , Proteína 9 Asociada a CRISPR/genética
12.
Mol Biol Cell ; 18(7): 2561-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17475778

RESUMEN

The ubiquitin-associated (UBA) domain of the mRNA nuclear export receptor Mex67 helps in coordinating transcription elongation and nuclear export by interacting both with ubiquitin conjugates and specific targets, such as Hpr1, a component of the THO complex. Here, we analyzed substrate specificity and ubiquitin selectivity of the Mex67 UBA domain. UBA-Mex67 is formed by three helices arranged in a classical UBA fold plus a fourth helix, H4. Deletion or mutation of helix H4 strengthens the interaction between UBA-Mex67 and ubiquitin, but it decreases its affinity for Hpr1. Interaction with Hpr1 is required for Mex67 UBA domain to bind polyubiquitin, possibly by inducing an H4-dependent conformational change. In vivo, deletion of helix H4 reduces cotranscriptional recruitment of Mex67 on activated genes, and it also shows an mRNA export defect. Based on these results, we propose that H4 functions as a molecular switch that coordinates the interaction of Mex67 with ubiquitin bound to specific substrates, defines the selectivity of the Mex67 UBA domain for polyubiquitin, and prevents its binding to nonspecific substrates.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Cinética , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Soluciones , Resonancia por Plasmón de Superficie , Transcripción Genética
13.
Mol Cell Biol ; 26(21): 7858-70, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16954382

RESUMEN

Transcription activation of some Saccharomyces cerevisiae genes is paralleled by their repositioning to the nuclear periphery, but the mechanism underlying gene anchoring is poorly defined. We show that the nuclear pore complex-associated Mlp1p and the shuttling mRNA export receptor Mex67p contribute to the stable association of the activated GAL10 and HSP104 genes with the nuclear periphery. However, we find no obligatory link between gene positioning and gene expression. Furthermore, gene anchoring correlates with the cotranscriptional recruitment of Mex67p to transcribing genes. Notably, the association of Mex67p with chromatin is not mediated by RNA. Interestingly, a mutant GAL2 gene lacking the coding region is still able to recruit Mex67p upon transcriptional activation and to relocate to the nuclear periphery. Together these data suggest that, at least for GAL2, nascent messenger ribonucleoprotein does not play a major role in gene anchoring and that the early recruitment of Mex67p contributes to gene repositioning by virtue of an RNA-independent process.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Regiones no Traducidas 3' , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
FEBS Lett ; 582(14): 1987-96, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18394429

RESUMEN

The transcription of mRNA is tightly coupled to the concomitant recruitment of mRNA processing and export factors, resulting in the formation of mature and export competent mRNP complexes. This interconnection in gene expression implies extensive spatio-temporal control of mRNP dynamics to prevent mRNA export factors bound to pre-mRNA from functioning at the incorrect time and exporting nascent or incompletely processed pre-mRNAs. Recent discoveries provide molecular understanding of how a broad range of post-translational modifications together with RNA-dependent ATPases coordinate proteins acting at different steps and regulate mRNP assembly and export.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Ribonucleoproteínas/metabolismo , Transcripción Genética , Transporte Activo de Núcleo Celular , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo
15.
Elife ; 62017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28760198

RESUMEN

Some RNAs in mammalian cells can help to silence the DNA they are transcribed from.


Asunto(s)
Silenciador del Gen , Heterocromatina , Animales , ADN , Regulación de la Expresión Génica , ARN
16.
Methods Mol Biol ; 1505: 195-213, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27826866

RESUMEN

Chromatin immunoprecipitation (ChIP) is a valuable technique for localizing proteins of interest to specific genomic sites and determining the relative abundance of these proteins at these sites. The ChIP method entails chemical cross-linking of proteins to genomic DNA, isolation of protein-DNA conjugates, and purification of DNA from conjugates. Real-time polymerase chain reactions are used to identify and quantify isolated genomic sequences. Here we describe how to localize yeast proteins to gene sequences residing within the nucleolus, i.e., ribosomal DNA (rDNA).


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , ADN Ribosómico/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultivo de Célula/métodos , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Reactivos de Enlaces Cruzados/química , ADN Ribosómico/análisis , ADN Ribosómico/genética , Formaldehído/química , Genoma Fúngico , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Proteínas Represoras/análisis , Proteínas Represoras/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/análisis , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/análisis , Sirtuina 2/genética , Sirtuina 2/metabolismo
17.
Biochimie ; 135: 83-88, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28143796

RESUMEN

In fission yeast, the catalytic activity of the protein lysine methyltransferase (PKMT) Clr4, the sole homolog of the mammalian SUV39H1 and SUV39H2 enzymes, majorly contributes to the formation of heterochromatin. The enzyme introduces histone 3 lysine 9 (H3K9) di- and tri-methylation, a central heterochromatic histone modification, and later it was also found to methylate the Mlo3 protein, which has a role in heterochromatin formation as well. Herein, we have investigated the substrate specificity of Clr4 using custom made mutational scanning peptide arrays. Our data show, that Clr4 recognizes an RK core motif, showing high preference for R8. In addition, it exhibits specific contacts at the S10, T11, G12 and G13 positions of the H3 peptide recognizing an R-K-SKRT-TCS-G sequence. Based on the specificity profile and in vitro methyltransferase assay targeted searches, 11 putative methylation sites in S. pombe proteins were identified from reported Clr4 interacting proteins including Mlo3. Peptide methylation was observed on Mlo3 and 7 novel target sites with strongest methylation signals on Spbc28F2.11 (HMG box-containing protein) at lysine 292 and Hrp3 (Chromodomain ATP-dep DNA helicase) at lysine 89. These data suggest that Clr4 has additional methylation substrates and it will be important to study the biological function of these novel methylation events. Furthermore, the specificity profile of Clr4 has been used to develop a quantitative method to compare and cluster specificity profiles of PKMTs. It shows that the specificity profile of Clr4 is most similar to that of the SUV39H2 enzyme, one of its human homologs. This approach will be helpful in the comparison of the recognition profiles of other families of PKMTs as well.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , N-Metiltransferasa de Histona-Lisina , Metilación , Metiltransferasas/genética , Procesamiento Proteico-Postraduccional , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Especificidad por Sustrato
18.
Elife ; 52016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27835568

RESUMEN

Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.


Asunto(s)
Heterocromatina/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
19.
Structure ; 20(6): 1007-18, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22560733

RESUMEN

Polyadenylation regulation and efficient nuclear export of mature mRNPs both require the polyadenosine-RNA-binding protein, Nab2, which contains seven CCCH Zn fingers. We describe here the solution structure of fingers 5-7, which are necessary and sufficient for high-affinity polyadenosine-RNA binding, and identify key residues involved. These Zn fingers form a single structural unit. Structural coherence is lost in the RNA-binding compromised Nab2-C437S mutant, which also suppresses the rat8-2 allele of RNA helicase Dbp5. Structure-guided Nab2 variants indicate that dbp5(rat8-2) suppression is more closely linked to hyperadenylation and suppression of mutant alleles of the nuclear RNA export adaptor, Yra1, than to affinity for polyadenosine-RNA. These results indicate that, in addition to modulating polyA tail length, Nab2 has an unanticipated function associated with generating export-competent mRNPs, and that changes within fingers 5-7 lead to suboptimal assembly of mRNP export complexes that are more easily disassembled by Dbp5 upon reaching the cytoplasm.


Asunto(s)
Transporte Activo de Núcleo Celular , Adenosina/química , Proteínas de Transporte Nucleocitoplasmático/química , Polímeros/química , Transporte de ARN , ARN Mensajero/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Propiedades de Superficie , Termodinámica , Dedos de Zinc
20.
FEBS Lett ; 584(17): 3812-8, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20655916

RESUMEN

Telomeres are heterochromatic structures at the ends of eukaryotic chromosomes. As other heterochromatin regions, telomeres are transcribed, from the subtelomeric region towards chromosome ends into the long non-coding RNA TERRA. Telomere transcription is a widespread phenomenon as it has been observed in species belonging to several kingdoms of the eukaryotic domain. TERRA is part of telomeric heterochromatin in addition to being present in the nucleoplasm. Here, we review the current knowledge of TERRA structure, biogenesis and turnover. In addition, we discuss presumed roles of this RNA during replication of telomeric DNA, heterochromatin formation and the regulation of telomerase.


Asunto(s)
ARN/genética , Telomerasa/genética , Telómero/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Daño del ADN , Replicación del ADN/genética , Heterocromatina/genética , Humanos , Cinética , Mamíferos , Neoplasias/genética , ARN/metabolismo , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Telomerasa/metabolismo , Telómero/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA