Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791148

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by the absence of the estrogen receptor, progesterone receptor, and receptor tyrosine kinase HER2 expression. Due to the limited number of FDA-approved targeted therapies for TNBC, there is an ongoing need to understand the molecular underpinnings of TNBC for the development of novel combinatorial treatment strategies. This study evaluated the role of the MerTK receptor tyrosine kinase on proliferation and invasion/metastatic potential in TNBC. Immunohistochemical analysis demonstrated MerTK expression in 58% of patient-derived TNBC xenografts. The stable overexpression of MerTK in human TNBC cell lines induced an increase in proliferation rates, robust in vivo tumor growth, heightened migration/invasion potential, and enhanced lung metastases. NanoString nCounter analysis of MerTK-overexpressing SUM102 cells (SUM102-MerTK) revealed upregulation of several signaling pathways, which ultimately drive cell cycle progression, reduce apoptosis, and enhance cell survival. Proteomic profiling indicated increased endoglin (ENG) production in SUM102-MerTK clones, suggesting that MerTK creates a conducive environment for increased proliferative and metastatic activity via elevated ENG expression. To determine ENG's role in increasing proliferation and/or metastatic potential, we knocked out ENG in a SUM102-MerTK clone with CRISPR technology. Although this ENG knockout clone exhibited similar in vivo growth to the parental SUM102-MerTK clone, lung metastasis numbers were significantly decreased ~4-fold, indicating that MerTK enhances invasion and metastasis through ENG. Our data suggest that MerTK regulates a unique proliferative signature in TNBC, promoting robust tumor growth and increased metastatic potential through ENG upregulation. Targeting MerTK and ENG simultaneously may provide a novel therapeutic approach for TNBC patients.


Asunto(s)
Proliferación Celular , Neoplasias de la Mama Triple Negativas , Tirosina Quinasa c-Mer , Humanos , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Animales , Femenino , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Endoglina/metabolismo , Endoglina/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Metástasis de la Neoplasia , Transducción de Señal , Apoptosis/genética
2.
BMC Cancer ; 22(1): 447, 2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461210

RESUMEN

BACKGROUND: The receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR) is overexpressed and an important therapeutic target in Head and Neck cancer (HNC). Cetuximab is currently the only EGFR-targeting agent approved by the FDA for treatment of HNC; however, intrinsic and acquired resistance to cetuximab is a major problem in the clinic. Our lab previously reported that AXL leads to cetuximab resistance via activation of HER3. In this study, we investigate the connection between AXL, HER3, and neuregulin1 (NRG1) gene expression with a focus on understanding how their interdependent signaling promotes resistance to cetuximab in HNC. METHODS: Plasmid or siRNA transfections and cell-based assays were conducted to test cetuximab sensitivity. Quantitative PCR and immunoblot analysis were used to analyze gene and protein expression levels. Seven HNC patient-derived xenografts (PDXs) were evaluated for protein expression levels. RESULTS: We found that HER3 expression was necessary but not sufficient for cetuximab resistance without AXL expression. Our results demonstrated that addition of the HER3 ligand NRG1 to cetuximab-sensitive HNC cells leads to cetuximab resistance. Further, AXL-overexpressing cells regulate NRG1 at the level of transcription, thereby promoting cetuximab resistance. Immunoblot analysis revealed that NRG1 expression was relatively high in cetuximab-resistant HNC PDXs compared to cetuximab-sensitive HNC PDXs. Finally, genetic inhibition of NRG1 resensitized AXL-overexpressing cells to cetuximab. CONCLUSIONS: The results of this study indicate that AXL may signal through HER3 via NRG1 to promote cetuximab resistance and that targeting of NRG1 could have significant clinical implications for HNC therapeutic approaches.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de Cabeza y Cuello , Neurregulina-1 , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Resistencia a Antineoplásicos/genética , Receptores ErbB , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Neurregulina-1/genética , Neurregulina-1/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa del Receptor Axl
3.
Nano Lett ; 20(7): 4901-4909, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32510959

RESUMEN

Upregulation of programmed death ligand 1 (PD-L1) allows cancer cells to evade antitumor immunity. Despite tremendous efforts in developing PD-1/PD-L1 immune checkpoint inhibitors (ICIs), clinical trials using such ICIs have shown inconsistent benefits. Here, we hypothesized that the ICI efficacy would be dictated by the binding strength of the inhibitor to the target proteins. To assess this, hyperbranched, multivalent poly(amidoamine) dendrimers were employed to prepare dendrimer-ICI conjugates (G7-aPD-L1). Binding kinetics measurements using SPR, BLI, and AFM revealed that G7-aPD-L1 exhibits significantly enhanced binding strength to PD-L1 proteins, compared to free aPD-L1. The binding avidity of G7-aPD-L1 was translated into in vitro efficiency and in vivo selectivity, as the conjugates improved the PD-L1 blockade effect and enhanced accumulation in tumor sites. Our results demonstrate that the dendrimer-mediated multivalent interaction substantially increases the binding avidity of the ICIs and thereby improves the antagonist effect, providing a novel platform for cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Nanopartículas , Anticuerpos Monoclonales , Inmunoterapia , Receptor de Muerte Celular Programada 1
4.
J Toxicol Pathol ; 34(4): 275-282, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34629730

RESUMEN

The research field of "Toxicologic Pathology" evaluates potentially toxic chemical exposures and chemically mediated illnesses in humans and experimental animals. Comparative studies of chemical exposures between model organisms and humans are essential for the risk assessment of chemicals and human health. Here we review the development and activities of the Japanese Society of Toxicologic Pathology (JSTP) during its 37-year history. Toxicological pathology studies provide many interesting and valuable findings. Rodent cancer bioassay data demonstrate the importance of dose levels, times, and duration of exposures to chemicals that possibly cause human cancers. Studies of toxic injuries in the nasal cavity demonstrate that specific chemical compounds affect different target cells and tissues. These observations are relevant for current air pollution studies in the preventive medicine field. Future toxicological pathology studies will be enhanced by applying molecular pathology with advanced observation techniques. In addition to the nasal cavity, another sense organ such as the tongue should be a potential next program of our mission for risk assessment of inhaled and ingested chemicals. As a message to the younger members of the JSTP, interdisciplinary and global cooperation should be emphasized. Elucidating the mechanisms of toxicologic pathology with a combination of advanced expertise in genetics and molecular biology offers promise for future advances by JSTP members.

5.
Semin Cell Dev Biol ; 50: 153-63, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26808665

RESUMEN

Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy.


Asunto(s)
Adaptación Fisiológica , Anticuerpos/uso terapéutico , Animales , Receptores ErbB/metabolismo , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-2/metabolismo
6.
Mol Cancer ; 13: 242, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25344208

RESUMEN

BACKGROUND: Cetuximab, an anti-EGFR monoclonal antibody, is used to treat several cancers. However, many patients who initially respond to cetuximab acquire resistance. To examine mechanisms of acquired resistance, we developed a series of cetuximab-resistant (Ctx(R)) clones derived from the cetuximab sensitive (CtxS) non-small cell lung cancer (NSCLC) cell line H226. Previous studies characterizing this model revealed that: 1) EGFR was robustly overexpressed in Ctx(R) clones due to decreased EGFR ubiquitination and degradation and 2) Ctx(R) clones expressed increased HER2 and HER3 activation resulting in constitutive activation of the PI3K/AKT signaling axis. These findings suggest that dual targeting HER family receptors would be highly beneficial in the Ctx(R) setting. RESULTS: Since HER3 has been implicated in resistance to EGFR inhibitors, the efficacy of dually targeting both EGFR and HER3 in Ctx(R) models was evaluated. First, EGFR and HER3 expression were knocked down with siRNAs. Compared to the Ctx(S) parental cell line (HP), all Ctx(R) clones exhibited robust decreases in cell proliferation upon dual knockdown. Analysis of Ctx(R) clones indicated that neuregulin-1 was highly overexpressed compared to HP cells. Incubation of HP cells with neuregulin-1 rendered them resistant to cetuximab. Next, dual treatment of Ctx(R) clones with cetuximab and the HER3 neutralizing monoclonal antibody (mAb) U3-1287 led to potent anti-proliferative effects. Blockade of EGFR with cetuximab resulted in inactivation of MAPK, while blockade of HER3 with U3-1287 resulted in the inactivation of AKT. Treatment with both mAbs resulted in knockdown of both signaling pathways simultaneously. HER2 was also strongly inactivated upon dual mAb therapy, suggesting that this treatment regimen can diminish signaling from three HER family receptors. De novo CtxR H226 mouse xenografts were established to determine if dual therapy could overcome acquired resistance to cetuximab in vivo. Tumors that had acquired resistance to cetuximab were significantly growth delayed upon dual treatment of U3-1287 and cetuximab compared to those continued on cetuximab only. Combinatorial-treated xenograft tumors expressed decreased Ki67 and increased cleaved caspase-3 levels compared to tumors treated with either monotherapy. CONCLUSIONS: These studies demonstrate that dually targeting HER family receptors with antibody-based therapies can overcome acquired resistance to cetuximab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Receptor ErbB-3/metabolismo , Animales , Anticuerpos Neutralizantes , Antineoplásicos/uso terapéutico , Anticuerpos ampliamente neutralizantes , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Cancers (Basel) ; 16(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254801

RESUMEN

Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.

8.
Mol Cancer ; 12(1): 133, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24192080

RESUMEN

BACKGROUND: Kinases downstream of growth factor receptors have been implicated in radioresistance and are, therefore, attractive targets to improve radiotherapy outcome in head and neck squamous cell carcinoma (HNSCC) patients. METHODS: An antibody-based array was used to quantify the expression levels of multiple phospho-kinases involved in growth factor signaling in nine untreated or irradiated HNSCC lines. Radiosensitivity was assessed with clonogenic cell survival assays and correlated with the expression levels of the phospho-kinases. Inhibitors of the kinases that were associated with radiosensitivity were tested for their ability to increase radiosensitivity in the 3 most radioresistant HNSCC lines. RESULTS: The basal expression of phosphorylated Yes, Src and STAT5A, and the expression after radiotherapy of phosphorylated AKT, MSK1/2, Src, Lyn, Fyn, Hck, and STAT6, were correlated with radiosensitivity in the panel of HNSCC lines. In combination with radiotherapy, inhibitors of AKT, p38 and Src Family Kinases (SFK) were variably able to reduce survival, whereas MEK1/2, STAT5 and STAT6 inhibition reduced survival in all cell lines. The combined effect of radiotherapy and the kinase inhibitors on cell survival was mostly additive, although also supra-additive effects were observed for AKT, MEK1/2, p38 and STAT5 inhibition. CONCLUSIONS: Kinases of the AKT, MAPK, STAT and SFK pathways correlated with radiosensitivity in a panel of HNSCC lines. Particularly inhibitors against MEK1/2, STAT5 and STAT6 were able to decrease survival in combination with radiotherapy. Hence, inhibitors against these kinases have the potential to improve radiotherapy outcome in HNSCC patients and further research is warranted to confirm this in vivo.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas/terapia , Supervivencia Celular/efectos de la radiación , Neoplasias de Cabeza y Cuello/terapia , Inhibidores de Proteínas Quinasas/farmacología , Butadienos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioradioterapia , Dasatinib , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/farmacología , Isoxazoles/farmacología , Leflunamida , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Nitrilos/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Factor de Transcripción STAT5/antagonistas & inhibidores , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT6/antagonistas & inhibidores , Factor de Transcripción STAT6/metabolismo , Tiazoles/farmacología , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo
9.
Sci Adv ; 9(13): eadf6854, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989364

RESUMEN

Immune checkpoint inhibitors (ICIs) can reinvigorate T cells to eradicate tumor cells, showing great potential in combating various types of tumors. We propose a delivery strategy to enhance tumor-selective ICI accumulation, which leverages the responsiveness of platelets and platelet-derivatives to coagulation cascade signals. A fused protein tTF-RGD targets tumor angiogenic blood vessel endothelial cells and initiates the coagulation locoregionally at the tumor site, forming a "cellular hive" to recruit anti-PD-1 antibody (aPD-1)-conjugated platelets to the tumor site and subsequently activating platelets to release aPD-1 antibody to reactivate T cells for improved immunotherapy. Moreover, on a patient-derived xenograft breast cancer model, the platelet membrane-coated nanoparticles can also respond to the coagulation signals initiated by tTF-RGD, thus enhancing the accumulation and antitumor efficacy of the loaded chemotherapeutics. Our study illustrates a versatile platform technology to enhance the local accumulation of ICIs and chemodrugs by taking advantage of the responsiveness of platelets and platelet derivatives to thrombosis.


Asunto(s)
Neoplasias , Trombosis , Animales , Humanos , Modelos Animales de Enfermedad , Células Endoteliales , Inmunoterapia , Neoplasias/tratamiento farmacológico , Oligopéptidos , Trombosis/tratamiento farmacológico , Trombosis/etiología , Receptor de Muerte Celular Programada 1/inmunología
10.
Cancer Lett ; 562: 216187, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37068555

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a common and deadly cancer. Circulating tumor cell (CTC) abundance may a valuable, prognostic biomarker in low- and intermediate-risk patients. However, few technologies have demonstrated success in detecting CTCs in these populations. We prospectively collected longitudinal CTC counts from two cohorts of patients receiving treatments at our institution using a highly sensitive device that purifies CTCs using biomimetic cell rolling and dendrimer-conjugated antibodies. In patients with intermediate risk human papillomavirus (HPV)-positive HNSCC, elevated CTC counts were detected in 13 of 14 subjects at screening with a median of 17 CTC/ml (range 0.2-2986.5). A second cohort of non-metastatic, HPV- HNSCC subjects received cetuximab monotherapy followed by surgical resection. In this cohort, all subjects had elevated baseline CTC counts median of 73 CTC/ml (range 5.4-332.9) with statistically significant declines during treatment. Interestingly, two patients with recurrent disease had elevated CTC counts during and following treatment, which also correlated with growth of size and ki67 expression in the primary tumor. The results suggest that our device may be a valuable tool for evaluating the success of less intensive treatment regimens.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Células Neoplásicas Circulantes , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Cetuximab/uso terapéutico , Células Neoplásicas Circulantes/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Biomarcadores de Tumor/metabolismo , Pronóstico
11.
Semin Radiat Oncol ; 33(3): 279-286, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37331782

RESUMEN

Patient-derived cancer models have been used for decades to improve our understanding of cancer and test anticancer treatments. Advances in radiation delivery have made these models more attractive for studying radiation sensitizers and understanding an individual patient's radiation sensitivity. Advances in the use of patient-derived cancer models lead to a more clinically relevant outcome, although many questions remain regarding the optimal use of patient-derived xenografts and patient-derived spheroid cultures. The use of patient-derived cancer models as personalized predictive avatars through mouse and zebrafish models is discussed, and the advantages and disadvantages of patient-derived spheroids are reviewed. In addition, the use of large repositories of patient-derived models to develop predictive algorithms to guide treatment selection is discussed. Finally, we review methods for establishing patient-derived models and identify key factors that influence their use as both avatars and models of cancer biology.


Asunto(s)
Neoplasias , Pez Cebra , Humanos , Ratones , Animales , Neoplasias/radioterapia , Modelos Animales de Enfermedad , Tolerancia a Radiación
12.
Head Neck ; 45(5): 1255-1271, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939040

RESUMEN

BACKGROUND: The tyrosine kinase receptors Axl and MerTK are highly overexpressed in head and neck cancer (HNC) cells, where they are critical drivers of survival, proliferation, metastasis, and therapeutic resistance. METHODS: We investigated the role of Axl and MerTK in creating an immunologically "cold" tumor immune microenvironment (TIME) by targeting both receptors simultaneously with a small molecule inhibitor of Axl and MerTK (INCB081776). Effects of INCB081776 and/or anti-PDL1 on mouse oral cancer (MOC) cell growth and on the TIME were evaluated. RESULTS: Targeting Axl and MerTK can reduce M2 and induce M1 macrophage polarization. In vivo, INCB081776 treatment alone or with anti-PDL1 appears to slow MOC tumor growth, increase proinflammatory immune infiltration, and decrease anti-inflammatory immune infiltration. CONCLUSIONS: This data indicates that simultaneous targeting of Axl and MerTK with INCB081776, either alone or in combination with anti-PDL1, slows tumor growth and creates a proinflammatory TIME in mouse models of HNC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas , Animales , Ratones , Tirosina Quinasa c-Mer , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Microambiente Tumoral
13.
BMC Cancer ; 12: 463, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23046567

RESUMEN

BACKGROUND: Only a minority of cancer patients benefits from the combination of EGFR-inhibition and radiotherapy in head and neck squamous cell carcinoma (HNSCC). A potential resistance mechanism is activation of EGFR and/or downstream pathways by stimuli in the microenvironment. The aim of this study was to find molecular targets induced by the microenvironment by determining the in vitro and in vivo expression of proteins of the EGFR-signaling network in 6 HNSCC lines. As hypoxia is an important microenvironmental parameter associated with poor outcome in solid tumors after radiotherapy, we investigated the relationship with hypoxia in vitro and in vivo. METHODS: Six human HNSCC cell lines were both cultured as cell lines (in vitro) and grown as xenograft tumors (in vivo). Expression levels were determined via western blot analysis and localization of markers was assessed via immunofluorescent staining. To determine the effect of hypoxia and pAKT-inhibition on cell survival, cells were incubated at 0.5% O(2) and treated with MK-2206. RESULTS: We observed strong in vitro-in vivo correlations for EGFR, pEGFR and HER2 (rs = 0.77, p = 0.10, rs = 0.89, p = 0.03) and rs = 0.93, p = 0.02, respectively), but not for pAKT, pERK1/2 or pSTAT3 (all r(s)<0.55 and p>0.30). In vivo, pAKT expression was present in hypoxic cells and pAKT and hypoxia were significantly correlated (rs = 0.51, p = 0.04). We confirmed in vitro that hypoxia induces activation of AKT. Further, pAKT-inhibition via MK-2206 caused a significant decrease in survival in hypoxic cells (p<0.01), but not in normoxic cells. CONCLUSIONS: These data suggest that (p)EGFR and HER2 expression is mostly determined by intrinsic features of the tumor cell, while the activation of downstream kinases is highly influenced by the tumor microenvironment. We show that hypoxia induces activation of AKT both in vitro and in vivo, and that hypoxic cells can be specifically targeted by pAKT-inhibition. Targeting pAKT is thus a potential way to overcome therapy resistance induced by hypoxia and improve patient outcome.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Western Blotting , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Hipoxia de la Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Receptores ErbB/antagonistas & inhibidores , Técnica del Anticuerpo Fluorescente , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Hipoxia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nitroimidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Fármacos Sensibilizantes a Radiaciones/farmacología , Radioterapia/métodos , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Radiother Oncol ; 174: 92-100, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35839938

RESUMEN

BACKGROUND: AKT1 must be present and activated in the nucleus immediately after irradiation to stimulate AKT1-dependent double-strand breaks (DSB) repair through the fast non-homologous end-joining (NHEJ) repair process. We investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the phosphorylation of nuclear AKT and radiation response. MATERIALS AND METHODS: Using genetic approaches and pharmacological inhibitors, we investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the activation of nuclear AKT in non-small cell lung cancer (NSCLC) cells in vitro. ɤH2AX foci assay was applied to investigate the role of AKT activating signaling pathway on DSB repair. A mouse tumor xenograft model was used to study the impact of discovered signaling pathway activating nuclear AKT on the radiation response of tumors in vivo. RESULTS: Our data suggests that neither ionizing radiation (IR) nor stimulation with HER family receptor ligands induced rapid nuclear translocation of endogenous AKT1. GFP-tagged exogenous AKT1 translocated to the nucleus under un-irradiated conditions and IR did not stimulate this translocation. Nuclear translocation of GFP-AKT1 was impaired by the AKT inhibitor MK2206 as shown by its accumulation in the cytoplasmic fraction. IR-induced phosphorylation of nuclear AKT was primarily dependent on HER3 expression and tyrosine kinase activation of epidermal growth factor receptor. In line with the role of AKT1 in DSB repair, the HER3 neutralizing antibody patritumab as well as HER3-siRNA diminished DSB repair in vitro. Combination of patritumab with radiotherapy improved the effect of radiotherapy on tumor growth delay in a xenograft model. CONCLUSION: IR-induced activation of nuclear AKT occurs inside the nucleus that is mainly dependent on HER3 expression in NSCLC. These findings suggest that targeting HER3 in combination with radiotherapy may provide a logical treatment option for investigation in selected NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Anticuerpos Neutralizantes/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Ratones , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño
15.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003386

RESUMEN

The multifunctional protein Y-box binding protein-1 (YB-1) regulates all the so far described cancer hallmarks including cell proliferation and survival. The MAPK/ERK and PI3K/Akt pathways are also the major pathways involved in cell growth, proliferation, and survival, and are the frequently hyperactivated pathways in human cancers. A gain of function mutation in KRAS mainly leads to the constitutive activation of the MAPK pathway, while the activation of the PI3K/Akt pathway occurs either through the loss of PTEN or a gain of function mutation of the catalytic subunit alpha of PI3K (PIK3CA). In this study, we investigated the underlying signaling pathway involved in YB-1 phosphorylation at serine 102 (S102) in KRAS(G13D)-mutated triple-negative breast cancer (TNBC) MDA-MB-231 cells versus PIK3CA(H1047R)/PTEN(E307K) mutated TNBC MDA-MB-453 cells. Our data demonstrate that S102 phosphorylation of YB-1 in KRAS-mutated cells is mainly dependent on the MAPK/ERK pathway, while in PIK3CA/PTEN-mutated cells, YB-1 S102 phosphorylation is entirely dependent on the PI3K/Akt pathway. Independent of the individual dominant pathway regulating YB-1 phosphorylation, dual targeting of MEK and PI3K efficiently inhibited YB-1 phosphorylation and blocked cell proliferation. This represents functional crosstalk between the two pathways. Our data obtained from the experiments, applying pharmacological inhibitors and genetic approaches, shows that YB-1 is a key player in cell proliferation, clonogenic activity, and tumor growth of TNBC cells through the MAPK and PI3K pathways. Therefore, dual inhibition of these two pathways or single targeting of YB-1 may be an effective strategy to treat TNBC.

16.
iScience ; 23(11): 101692, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33196021

RESUMEN

The tyrosine kinase receptor ephrin receptor A2 (EPHA2) is overexpressed in lung (LSCC) and head and neck (HNSCC) squamous cell carcinomas. Although EPHA2 can inhibit tumorigenesis in a ligand-dependent fashion via phosphorylation of Y588 and Y772, it can promote tumorigenesis in a ligand-independent manner via phosphorylation of S897. Here, we show that EPHA2 and Roundabout Guidance Receptor 1 (ROBO1) interact to form a functional heterodimer. Furthermore, we show that the ROBO1 ligand Slit Guidance Ligand 2 (SLIT2) and ensartinib, an inhibitor of EPHA2, can attenuate growth of HNSCC cells and act synergistically in LSCC cells. Our results suggest that patients with LSCC and HNSCC may be stratified and treated based on their EPHA2 and ROBO1 expression patterns. Although ~73% of patients with LSCC could benefit from SLIT2+ensartinib treatment, ~41% of patients with HNSCC could be treated with either SLIT2 or ensartinib. Thus, EPHA2 and ROBO1 represent potential LSCC and HNSCC theranostics.

17.
Clin Cancer Res ; 26(16): 4349-4359, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32439698

RESUMEN

PURPOSE: Radiation and cetuximab are therapeutics used in management of head and neck squamous cell carcinoma (HNSCC). Despite clinical success with these modalities, development of both intrinsic and acquired resistance is an emerging problem in the management of this disease. The purpose of this study was to investigate signaling of the receptor tyrosine kinase AXL in resistance to radiation and cetuximab treatment. EXPERIMENTAL DESIGN: To study AXL signaling in the context of treatment-resistant HNSCC, we used patient-derived xenografts (PDXs) implanted into mice and evaluated the tumor response to AXL inhibition in combination with cetuximab or radiation treatment. To identify molecular mechanisms of how AXL signaling leads to resistance, three tyrosine residues of AXL (Y779, Y821, Y866) were mutated and examined for their sensitivity to cetuximab and/or radiation. Furthermore, reverse phase protein array (RPPA) was employed to analyze the proteomic architecture of signaling pathways in these genetically altered cell lines. RESULTS: Treatment of cetuximab- and radiation-resistant PDXs with AXL inhibitor R428 was sufficient to overcome resistance. RPPA analysis revealed that such resistance emanates from signaling of tyrosine 821 of AXL via the tyrosine kinase c-ABL. In addition, inhibition of c-ABL signaling resensitized cells and tumors to cetuximab or radiotherapy even leading to complete tumor regression without recurrence in head and neck cancer models. CONCLUSIONS: Collectively, the studies presented herein suggest that tyrosine 821 of AXL mediates resistance to cetuximab by activation of c-ABL kinase in HNSCC and that targeting of both EGFR and c-ABL leads to a robust antitumor response.


Asunto(s)
Cetuximab/farmacología , Genes abl/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/radioterapia , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Línea Celular Tumoral , Cetuximab/efectos adversos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/radioterapia , Proteómica , Tolerancia a Radiación/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Tirosina/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
18.
Oncologist ; 14(7): 667-78, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19581523

RESUMEN

The proto-oncogene c-Src (Src) encodes a nonreceptor tyrosine kinase whose expression and activity are correlated with advanced malignancy and poor prognosis in a variety of human cancers. Nine additional enzymes with homology to Src have been identified and collectively are referred to as Src family kinases (SFKs). Together, SFKs represent the largest family of nonreceptor tyrosine kinases and interact directly with receptor tyrosine kinases, G-protein-coupled receptors, steroid receptors, signal transducers and activators of transcription, and molecules involved in cell adhesion and migration. These interactions lead to a diverse array of biological functions including proliferation, cell growth, differentiation, cell shape, motility, migration, angiogenesis, and survival. Studies investigating mutational activation of Src in human cancers suggest that this may be a rare event and that wild-type Src is weakly oncogenic. Thus, the role of Src in the development and progression of human cancer remains unclear. Recently, it was suggested that increased SFK protein levels and, more importantly, SFK tyrosine kinase activity are linked to cancer progression and metastatic disease by facilitating the action of other signaling proteins. This accumulating body of evidence indicates that SFKs may represent a promising therapeutic target for the treatment of solid tumors. This review discusses the role of SFKs in solid tumors and the recent therapeutic advances aimed at targeting this family of tyrosine kinases in cancer.


Asunto(s)
Neoplasias/enzimología , Familia-src Quinasas/metabolismo , Animales , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proto-Oncogenes Mas , Familia-src Quinasas/antagonistas & inhibidores
19.
Mol Cancer Ther ; 17(1): 204-214, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054984

RESUMEN

Overexpression and activation of the EGFR have been linked to poor prognosis in several human cancers. Cetuximab is a mAb against EGFR that is used for the treatment in head and neck squamous cell carcinoma (HNSCC) and metastatic colorectal cancer. Unfortunately, most tumors have intrinsic or will acquire resistance to cetuximab during the course of therapy. Honokiol is a natural compound found in the bark and leaves of the Chinese Magnolia tree and is established to have several anticancer properties without appreciable toxicity. In this study, we hypothesized that combining cetuximab and honokiol treatments could overcome acquired resistance to cetuximab. We previously developed a model of acquired resistance to cetuximab in non-small cell lung cancer H226 cell line. Treatment of cetuximab-resistant clones with honokiol and cetuximab resulted in a robust antiproliferative response. Immunoblot analysis revealed the HER family and their signaling pathways were downregulated after combination treatment, most notably the proliferation (MAPK) and survival (AKT) pathways. In addition, we found a decrease in phosphorylation of DRP1 and reactive oxygen species after combination treatment in cetuximab-resistant clones, which may signify a change in mitochondrial function. Furthermore, we utilized cetuximab-resistant HNSCC patient-derived xenografts (PDX) to test the benefit of combinatorial treatment in vivo There was significant growth delay in PDX tumors after combination treatment with a subsequent downregulation of active MAPK, AKT, and DRP1 signaling as seen in vitro Collectively, these data suggest that honokiol is a promising natural compound in overcoming acquired resistance to cetuximab. Mol Cancer Ther; 17(1); 204-14. ©2017 AACR.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Cetuximab/uso terapéutico , Lignanos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Compuestos de Bifenilo/farmacología , Proliferación Celular , Cetuximab/farmacología , Resistencia a Antineoplásicos , Femenino , Humanos , Lignanos/farmacología
20.
Mol Cancer Ther ; 17(11): 2297-2308, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30093568

RESUMEN

The TAM (TYRO3, AXL, MERTK) family receptor tyrosine kinases (RTK) play an important role in promoting growth, survival, and metastatic spread of several tumor types. AXL and MERTK are overexpressed in head and neck squamous cell carcinoma (HNSCC), triple-negative breast cancer (TNBC), and non-small cell lung cancer (NSCLC), malignancies that are highly metastatic and lethal. AXL is the most well-characterized TAM receptor and mediates resistance to both conventional and targeted cancer therapies. AXL is highly expressed in aggressive tumor types, and patients with cancer are currently being enrolled in clinical trials testing AXL inhibitors. In this study, we analyzed the effects of AXL inhibition using a small-molecule AXL inhibitor, a monoclonal antibody (mAb), and siRNA in HNSCC, TNBC, and NSCLC preclinical models. Anti-AXL-targeting strategies had limited efficacy across these different models that, our data suggest, could be attributed to upregulation of MERTK. MERTK expression was increased in cell lines and patient-derived xenografts treated with AXL inhibitors and inhibition of MERTK sensitized HNSCC, TNBC, and NSCLC preclinical models to AXL inhibition. Dual targeting of AXL and MERTK led to a more potent blockade of downstream signaling, synergistic inhibition of tumor cell expansion in culture, and reduced tumor growth in vivo Furthermore, ectopic overexpression of MERTK in AXL inhibitor-sensitive models resulted in resistance to AXL-targeting strategies. These observations suggest that therapeutic strategies cotargeting both AXL and MERTK could be highly beneficial in a variety of tumor types where both receptors are expressed, leading to improved survival for patients with lethal malignancies. Mol Cancer Ther; 17(11); 2297-308. ©2018 AACR.


Asunto(s)
Resistencia a Antineoplásicos , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Tirosina Quinasa c-Mer/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Sinergismo Farmacológico , Femenino , Humanos , Ratones Desnudos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Tirosina Quinasa del Receptor Axl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA