Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007638

RESUMEN

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.


Asunto(s)
Axonema , Cilios , Pez Cebra , Animales , Cilios/metabolismo , Cilios/ultraestructura , Pez Cebra/metabolismo , Ratones , Axonema/metabolismo , Axonema/ultraestructura , Dineínas Axonemales/metabolismo , Dineínas Axonemales/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Dineínas/metabolismo
2.
PLoS Biol ; 21(9): e3002302, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37733651

RESUMEN

Organ laterality of vertebrates is specified by accelerated asymmetric decay of Dand5 mRNA mediated by Bicaudal-C1 (Bicc1) on the left side, but whether binding of this or any other mRNA to Bicc1 can be regulated is unknown. Here, we found that a CRISPR-engineered truncation in ankyrin and sterile alpha motif (SAM)-containing 3 (ANKS3) leads to symmetric mRNA decay mediated by the Bicc1-interacting Dand5 3' UTR. AlphaFold structure predictions of protein complexes and their biochemical validation by in vitro reconstitution reveal a novel interaction of the C-terminal coiled coil domain of ANKS3 with Bicc1 that inhibits binding of target mRNAs, depending on the conformation of ANKS3 and its regulation by ANKS6. The dual regulation of RNA binding by mutually opposing structured protein domains in this multivalent protein network emerges as a novel mechanism linking associated laterality defects and possibly other ciliopathies to perturbed dynamics in Bicc1 ribonucleoparticle (RNP) formation.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Lateralidad Funcional , Animales , Dominios Proteicos , ARN Mensajero/genética , Ribonucleoproteínas/genética
3.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35420656

RESUMEN

For left-right symmetry breaking in the mouse embryo, the basal body must become positioned at the posterior side of node cells, but the precise mechanism for this has remained unknown. Here, we examined the role of microtubules (MTs) and actomyosin in this basal body positioning. Exposure of mouse embryos to agents that stabilize or destabilize MTs or F-actin impaired such positioning. Active myosin II was detected at the anterior side of node cells before the posterior shift of the basal body, and this asymmetric activation was lost in Prickle and dachsous mutant embryos. The organization of basal-body associated MTs (baMTs) was asymmetric between the anterior and posterior sides of node cells, with anterior baMTs extending horizontally and posterior baMTs extending vertically. This asymmetry became evident after polarization of the PCP core protein Vangl1 and before the posterior positioning of the basal body, and it also required the PCP core proteins Prickle and dachsous. Our results suggest that the asymmetry in baMT organization may play a role in correct positioning of the basal body for left-right symmetry breaking.


Asunto(s)
Cuerpos Basales , Polaridad Celular , Actinas/metabolismo , Animales , Polaridad Celular/fisiología , Cilios/metabolismo , Ratones , Microtúbulos/metabolismo
4.
Dev Biol ; 498: 97-105, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019373

RESUMEN

Gse1 is a component of the CoREST complex that acts as an H3K4 and H3K9 demethylase and regulates gene expression. Here, we examined the expression and role of Gse1 in mouse development. Gse1 is expressed in male and female germ cells and plays both maternal and zygotic roles. Thus, maternal deletion of Gse1 results in a high incidence of prenatal death, and zygotic deletion leads to embryonic lethality from embryonic day 12.5 (E12.5) and perinatal death. Gse1 is expressed in the junctional zone and the labyrinth of the developing placenta. Gse1 mutant (Gse1Δex3/Δex3) placenta begins to exhibit histological defects from E14.5, being deficient in MCT4+ syncytiotrophoblast II. The number of various cell types was largely maintained in the mutant placenta at E10.5, but several genes were upregulated in giant trophoblasts at E10.5. Placenta-specific deletion of Gse1 with Tat-Cre suggested that defects in Gse1Δex3/Δex3 embryos are due to placental function deficiency. These results suggest that Gse1 is required for placental development in mice, and in turn, is essential for embryonic development.


Asunto(s)
Placenta , Placentación , Ratones , Embarazo , Femenino , Animales , Masculino , Desarrollo Embrionario/genética , Trofoblastos
5.
Genes Cells ; 28(6): 422-432, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36906847

RESUMEN

Maternal factors present in oocytes and surrounding granulosa cells influence early development of embryos. In this study, we searched for epigenetic regulators that are expressed in oocytes and/or granulosa cells. Some of the 120 epigenetic regulators examined were expressed specifically in oocytes and/or granulosa cells. When their expression was examined in young versus aged oocytes or granulosa cells, many were significantly up- or downregulated in aged cells. The maternal role of six genes in development was investigated by generating oocyte-specific knock-out (MKO) mice. Two genes (Mllt10, Kdm2b) did not show maternal effects on later development, whereas maternal effects were evident for Kdm6a, Kdm4a, Prdm3, and Prdm16 for MKO female mice. Offspring from Kdm6a MKO mice underwent perinatal lethality at a higher rate. Pups derived from Prdm3;Prdm16 double MKO showed a higher incidence of postnatal death. Finally, embryos derived from Kdm4a MKO mice showed early developmental defects as early as the peri-implantation stage. These results suggest that many of maternal epigenetic regulators undergo differential expression upon aging. Some, such as Kdm4a, Kdm6a, Prdm3, and Prdm16, have maternal role in later embryonic or postnatal development.


Asunto(s)
Oocitos , Factores de Transcripción , Embarazo , Femenino , Animales , Ratones , Oocitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Epigénesis Genética , Desarrollo Embrionario/genética
6.
PLoS Genet ; 16(12): e1009232, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347437

RESUMEN

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Asunto(s)
Dineínas Axonemales/metabolismo , Axonema/metabolismo , Transporte Biológico Activo/genética , Movimiento Celular/genética , Cilios/metabolismo , Embrión de Mamíferos/metabolismo , Microtúbulos/metabolismo , Animales , Dineínas Axonemales/genética , Axonema/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cilios/genética , Embrión de Mamíferos/fisiología , Embrión de Mamíferos/ultraestructura , Epéndimo/embriología , Epéndimo/metabolismo , Epéndimo/fisiología , Técnica del Anticuerpo Fluorescente , Genotipo , Inmunoprecipitación , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microtúbulos/genética , Mutación , Fenotipo , Tráquea/embriología , Tráquea/metabolismo , Tráquea/fisiología , Tráquea/ultraestructura
7.
Genes Cells ; 24(11): 731-745, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31554018

RESUMEN

Cluap1/IFT38 is a ciliary protein that belongs to the IFT-B complex and is required for ciliogenesis. In this study, we have examined the behaviors of Cluap1 protein in nonciliated and ciliated cells. In proliferating cells, Cluap1 is located at the distal appendage of the mother centriole. When cells are induced to form cilia, Cluap1 is found in a novel noncentriolar compartment, the cytoplasmic IFT spot, which mainly exists once in a cell. Other IFT-B proteins such as IFT46 and IFT88 are colocalized in this spot. The cytoplasmic IFT spot is present in mouse embryonic fibroblasts (MEFs) but is absent in ciliogenesis-defective MEFs lacking Cluap1, Kif3a or Odf2. The cytoplasmic IFT spot is also found in mouse embryos but is absent in the Cluap1 mutant embryo. When MEFs are induced to form cilia, the cytoplasmic IFT spot appears at an early step of ciliogenesis but starts to disappear when ciliogenesis is mostly completed. These results suggest that IFT-B proteins such as Cluap1 accumulate in a previously undescribed cytoplasmic compartment during ciliogenesis.


Asunto(s)
Cilios/metabolismo , Citoplasma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Cilios/ultraestructura , Citoplasma/ultraestructura , Fibroblastos , Proteínas de Choque Térmico , Péptidos y Proteínas de Señalización Intracelular/genética , Cinesinas , Ratones , Ratones Noqueados , Proteínas Supresoras de Tumor
8.
Dev Biol ; 395(2): 331-41, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25224222

RESUMEN

The transcription factor Pitx2c is expressed in primordial visceral organs in a left-right (L-R) asymmetric manner and executes situs-specific morphogenesis. Here we show that Pitx2c is also L-R asymmetrically expressed in the developing mouse limb. Human PITX2c exhibits the same transcriptional activity in the mouse limb. The asymmetric expression of Pitx2c in the limb also exhibits dorsal-ventral and anterior-posterior polarities, being confined to the posterior-dorsal region of the left limb. Left-sided Pitx2c expression in the limb is regulated by Nodal signaling through a Nodal-responsive enhancer. Pitx2c is expressed in lateral plate mesoderm (LPM)-derived cells in the left limb that contribute to various limb connective tissues. The number of Pitx2c(+) cells in the left limb was found to be negatively regulated by Pitx2c itself. Although obvious defects were not apparent in the limb of mice lacking asymmetric Pitx2c expression, Pitx2c may regulate functional L-R asymmetry of the limb.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Morfogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Galactósidos , Técnicas de Sustitución del Gen , Hibridación in Situ , Indoles , Ratones , Ratones Transgénicos , Tamoxifeno , Proteína del Homeodomínio PITX2
9.
Science ; 379(6627): 66-71, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36603091

RESUMEN

Immotile cilia at the ventral node of mouse embryos are required for sensing leftward fluid flow that breaks left-right symmetry of the body. However, the flow-sensing mechanism has long remained elusive. In this work, we show that immotile cilia at the node undergo asymmetric deformation along the dorsoventral axis in response to the flow. Application of mechanical stimuli to immotile cilia by optical tweezers induced calcium ion transients and degradation of Dand5 messenger RNA (mRNA) in the targeted cells. The Pkd2 channel protein was preferentially localized to the dorsal side of immotile cilia, and calcium ion transients were preferentially induced by mechanical stimuli directed toward the ventral side. Our results uncover the biophysical mechanism by which immotile cilia at the node sense the direction of fluid flow.


Asunto(s)
Señalización del Calcio , Calcio , Cilios , Mecanotransducción Celular , Animales , Ratones , Calcio/metabolismo , Cilios/fisiología , Embrión de Mamíferos
10.
Aging Cell ; 20(8): e13428, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34245092

RESUMEN

Chromosome segregation errors in oocytes lead to the production of aneuploid eggs, which are the leading cause of pregnancy loss and of several congenital diseases such as Down syndrome. The frequency of chromosome segregation errors in oocytes increases with maternal age, especially at a late stage of reproductive life. How aging at various life stages affects oocytes differently remains poorly understood. In this study, we describe aging-associated changes in the transcriptome profile of mouse oocytes throughout reproductive life. Our single-oocyte comprehensive RNA sequencing using RamDA-seq revealed that oocytes undergo transcriptome changes at a late reproductive stage, whereas their surrounding cumulus cells exhibit transcriptome changes at an earlier stage. Calorie restriction, a paradigm that reportedly prevents aging-associated egg aneuploidy, promotes a transcriptome shift in oocytes with the up-regulation of genes involved in chromosome segregation. This shift is accompanied by the improved maintenance of chromosomal cohesin, the loss of which is a hallmark of oocyte aging and causes chromosome segregation errors. These findings have implications for understanding how oocytes undergo aging-associated functional decline throughout their reproductive life in a context-dependent manner.


Asunto(s)
Envejecimiento/genética , Restricción Calórica/métodos , Perfilación de la Expresión Génica/métodos , Oocitos/metabolismo , Animales , Femenino , Humanos , Ratones
11.
Nat Commun ; 12(1): 4071, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210974

RESUMEN

Molecular left-right (L-R) asymmetry is established at the node of the mouse embryo as a result of the sensing of a leftward fluid flow by immotile cilia of perinodal crown cells and the consequent degradation of Dand5 mRNA on the left side. We here examined how the fluid flow induces Dand5 mRNA decay. We found that the first 200 nucleotides in the 3' untranslated region (3'-UTR) of Dand5 mRNA are necessary and sufficient for the left-sided decay and to mediate the response of a 3'-UTR reporter transgene to Ca2+, the cation channel Pkd2, the RNA-binding protein Bicc1 and their regulation by the flow direction. We show that Bicc1 preferentially recognizes GACR and YGAC sequences, which can explain the specific binding to a conserved GACGUGAC motif located in the proximal Dand5 3'-UTR. The Cnot3 component of the Ccr4-Not deadenylase complex interacts with Bicc1 and is also required for Dand5 mRNA decay at the node. These results suggest that Ca2+ currents induced by leftward fluid flow stimulate Bicc1 and Ccr4-Not to mediate Dand5 mRNA degradation specifically on the left side of the node.


Asunto(s)
Embrión de Mamíferos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores CCR4/metabolismo , Regiones no Traducidas 3' , Animales , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética , Receptores CCR4/genética , Canales Catiónicos TRPP/metabolismo , Factores de Transcripción
12.
Sci Adv ; 6(30): eaba1195, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32743070

RESUMEN

Immotile cilia sense extracellular signals such as fluid flow, but whether Ca2+ plays a role in flow sensing has been unclear. Here, we examined the role of ciliary Ca2+ in the flow sensing that initiates the breaking of left-right (L-R) symmetry in the mouse embryo. Intraciliary and cytoplasmic Ca2+ transients were detected in the crown cells at the node. These Ca2+ transients showed L-R asymmetry, which was lost in the absence of fluid flow or the PKD2 channel. Further characterization allowed classification of the Ca2+ transients into two types: cilium-derived, L-R-asymmetric transients (type 1) and cilium-independent transients without an L-R bias (type 2). Type 1 intraciliary transients occurred preferentially at the left posterior region of the node, where L-R symmetry breaking takes place. Suppression of intraciliary Ca2+ transients delayed L-R symmetry breaking. Our results implicate cilium-derived Ca2+ transients in crown cells in initiation of L-R symmetry breaking in the mouse embryo.

13.
Nat Ecol Evol ; 4(2): 261-269, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907383

RESUMEN

Unidirectional fluid flow generated by motile cilia at the left-right organizer (LRO) breaks left-right (L-R) symmetry during early embryogenesis in mouse, frog and zebrafish. The chick embryo, however, does not require motile cilia for L-R symmetry breaking. The diversity of mechanisms for L-R symmetry breaking among vertebrates and the trigger for such symmetry breaking in non-mammalian amniotes have remained unknown. Here we examined how L-R asymmetry is established in two reptiles, Madagascar ground gecko and Chinese softshell turtle. Both of these reptiles appear to lack motile cilia at the LRO. The expression of the Nodal gene at the LRO in the reptilian embryos was found to be asymmetric, in contrast to that in vertebrates such as mouse that are dependent on cilia for L-R patterning. Two paralogues of the Nodal gene derived from an ancient gene duplication are retained and expressed differentially in cilia-dependent and cilia-independent vertebrates. The expression of these two Nodal paralogues is similarly controlled in the lateral plate mesoderm but regulated differently at the LRO. Our in-depth analysis of reptilian embryos thus suggests that mammals and non-mammalian amniotes deploy distinct strategies dependent on different Nodal paralogues for rendering Nodal activity asymmetric at the LRO.


Asunto(s)
Tipificación del Cuerpo , Cilios , Animales , Embrión de Pollo , Madagascar , Ratones , Reptiles , Pez Cebra
14.
Nat Commun ; 11(1): 5520, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139725

RESUMEN

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Astenozoospermia/genética , Proteínas del Citoesqueleto/deficiencia , Situs Inversus/genética , Adolescente , Adulto , Animales , Astenozoospermia/patología , Axonema/ultraestructura , Sistemas CRISPR-Cas/genética , Cilios/metabolismo , Cilios/ultraestructura , Proteínas del Citoesqueleto/genética , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Epidídimo/patología , Femenino , Flagelos/metabolismo , Flagelos/ultraestructura , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Planarias/citología , Planarias/genética , Planarias/metabolismo , Mucosa Respiratoria/citología , Mucosa Respiratoria/patología , Situs Inversus/diagnóstico por imagen , Situs Inversus/patología , Motilidad Espermática/genética , Tomografía Computarizada por Rayos X , Secuenciación del Exoma
15.
Dev Cell ; 40(5): 439-452.e4, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28292423

RESUMEN

Polarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly. Here we show that polarization of node cells is impaired in Wnt5a-/-Wnt5b-/- and Sfrp mutant embryos, and also in the presence of a uniform distribution of Wnt5a or Sfrp1, suggesting that Wnt5 and Sfrp proteins act as instructive signals in this process. The absence of planar cell polarity (PCP) core proteins Prickle1 and Prickle2 in individual cells or local forced expression of Wnt5a perturbed polarization of neighboring wild-type cells. Our results suggest that opposing gradients of Wnt5a and Wnt5b and of their Sfrp inhibitors, together with intercellular signaling via PCP proteins, polarize node cells along the anterior-posterior axis for breaking of left-right symmetry.


Asunto(s)
Tipificación del Cuerpo , Polaridad Celular , Transducción de Señal , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Comunicación Celular , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Modelos Biológicos , Proteínas/metabolismo
16.
Development ; 130(9): 1725-34, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12642479

RESUMEN

Inversin (Inv), a protein that contains ankyrin repeats, plays a key role in left-right determination during mammalian embryonic development, but its precise function remains unknown. Transgenic mice expressing an Inv and green fluorescent protein (GFP) fusion construct (Inv::GFP) were established to facilitate characterization of the subcellular localization of Inv. The Inv::GFP transgene rescued the laterality defects and polycystic kidney disease of Inv/Inv mice, indicating that the fusion protein is functional. In transgenic embryos, Inv::GFP protein was detected in the node monocilia. The fusion protein was also present in other 9+0 monocilia, including those of kidney epithelial cells and the pituitary gland, but it was not localized to 9+2 cilia. The N-terminal region of Inv (InvDeltaC) including the ankyrin repeats also localized to the node cilia and rescued the left-right defects of Inv/Inv mutants. Although no obvious abnormalities were detected in the node monocilia of Inv/Inv embryos, the laterality defects of such embryos were corrected by an artificial leftward flow of fluid in the node, suggesting that nodal flow is impaired by the Inv mutation. These results suggest that the Inv protein contributes to left-right determination as a component of monocilia in the node and is essential for the generation of normal nodal flow.


Asunto(s)
Cilios/metabolismo , Proteínas/metabolismo , Factores de Transcripción , Animales , Repetición de Anquirina/genética , Fibroblastos/metabolismo , Genes Reporteros/fisiología , Riñón/embriología , Ratones/embriología , Ratones Transgénicos , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA