Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Japonés | MEDLINE | ID: mdl-31327772

RESUMEN

In April 2011, the International Radiological Protection Committee recommended that "The equivalent dose of the crystalline lens should not exceed 20 mSv/year, averaged over defined periods of 5 years, with no single year exceeding 50 mSv". Based on this recommendation, it is predicted that the equivalent dose limit of our crystalline lens can be lowered in the near future. Therefore, it is important to grasp the current situation of radiation exposure. The purpose of this study is to measure the crystalline lens of surgeons by focusing on the CT-fluoroscopy guided interventional radiology's (IVRs). We also examined whether the exposure dose of the crystalline lens can be correctly evaluated by measuring the unequal exposure dose of the neck, which is usually used for the unequal exposure measurement. Results of the analysis of 200 CT-fluoroscopy guided IVR procedures showed that the unequal exposure dose of the neck was significantly correlated with the exposure dose of the crystalline lens which was measured near the left eye ball (R=0.83). However, the exposure dose of the crystalline was 33% lower than those of the neck. Therefore, although the individual dosimeter worn on the neck can be used as the useful index of the exposure dose of the crystalline lens, the results can be overestimated.


Asunto(s)
Cristalino , Exposición a la Radiación , Protección Radiológica , Cabeza , Humanos , Cuello , Dosis de Radiación , Tomografía Computarizada por Rayos X
2.
Artículo en Japonés | MEDLINE | ID: mdl-28216528

RESUMEN

PURPOSE: Determination of X-ray fluoroscopy radiation dose and contrast with angiographic system automatically depending on the objects, and to control setting manually, which is difficult for the measurement of characteristics. Therefore, we examined the method to adjust the conditions of fluoroscopy and measured the input-output characteristics. METHOD: To adjust and fix the condition of fluoroscopy, the exposure adjustment area at the center of the irradiation field was moved to the left side and attached the copper plates to regulate the exposure dose. The area to measure the digital value was selected at the center of the irradiation field, and the dosimeter was placed at the right side of the area, which was selected to measure the digital value. To regulate the entrance dose progressively, the acryl plates were inserted into the irradiation field except for the exposure adjustment area. We obtained a characteristic curve from the measured dose and the digital value. Difference of lookup table (LUT), dose dependency, and tube voltage dependency were checked by the digital characteristic curves. RESULT: Each LUT showed different curves, but they all saturated with 4095, which is the maximum value of 12 bits. Dose dependency was measured as an increase in the permitted dose level with an increase in the setting dose. Tube voltage dependency improved with the tube voltage rises. Each characteristic curve became same by converting the relative exposure dose. As a result, measuring the shape of LUT would be possible. CONCLUSION: The method is useful for measuring the characteristic curve with the X-ray fluoroscopy of angiographic system.


Asunto(s)
Angiografía/métodos , Fluoroscopía/métodos , Angiografía/instrumentación , Fluoroscopía/instrumentación , Dosis de Radiación , Rayos X
3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 72(1): 13-20, 2016 Jan.
Artículo en Japonés | MEDLINE | ID: mdl-26796929

RESUMEN

The role of the X-ray fluoroscopic image during interventional radiology (IVR) is not only the real-time dynamic image for the catheter operation but also to confirm the vascular anatomy using stored image, so that the importance increases more. For the purpose of measuring the time sequence characteristics of X-ray fluoroscopic image, we sampled the digital value of the same coordinate from each X-ray fluoroscopic image and calculated the frequency properties of the noise for the time sequence order as NPStime by performing Fourier transform on the digital value. The parameters, except k-factor which is the time sequence filter, did not influence NPStime. NPStime, which was examined in this study, showed that it is valuable for the method to analyze the time sequence noise characteristics. And, it also showed that it is possible to evaluate the time sequence image processing parameters of X-ray fluoroscopic image by NPStime. Nowadays, each manufacture of the X-ray angiographic system performs the original image processing to their own X-ray fluoroscopic images. The results of the discussion in this study could show the quantitative analysis on the frequency modulation. And it is possible to calculate NPStime by measuring the digital value of stored X-ray fluoroscopic image. The analysis by this method is also technically convenient for the time sequence noise characteristics of the X-ray fluoroscopic image.


Asunto(s)
Fluoroscopía , Angiografía , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA