Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 300(3): 105728, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325740

RESUMEN

Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.


Asunto(s)
Serina C-Palmitoiltransferasa , Serina , Sphingobacterium , Dominio Catalítico , Cristalización , Medición de Intercambio de Deuterio , Electrones , Hidrógeno/metabolismo , Palmitoil Coenzima A/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo , Sphingobacterium/enzimología , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/biosíntesis , Esfingosina/metabolismo , Estereoisomerismo , Especificidad por Sustrato
2.
J Biol Chem ; 299(5): 104684, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030501

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Asunto(s)
Serina C-Palmitoiltransferasa , Sphingobacterium , Humanos , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Serina/química , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Sphingobacterium/enzimología , Esfingolípidos/metabolismo , Especificidad por Sustrato
3.
Proc Natl Acad Sci U S A ; 113(10): E1334-42, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903652

RESUMEN

We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Estrés del Retículo Endoplásmico , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Péptidos Catiónicos Antimicrobianos/genética , Western Blotting , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones Noqueados , Microscopía Fluorescente , FN-kappa B/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esfingosina/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Catelicidinas
4.
Biochim Biophys Acta ; 1814(11): 1474-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21315853

RESUMEN

Serine palmitoyltransferase, which is one of the α-oxamine synthase family enzymes, catalyzes the condensation reaction of L-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine, the first and rate-determining step of the sphingolipid biosynthesis. As with other α-oxamine synthase family enzymes, the catalytic reaction is composed of multiple elementary steps, and the mechanism to control these steps to avoid side reactions has been the subject of intensive research in recent years. Combined spectroscopic, kinetic, and structural studies have revealed the finely controlled stereochemical mechanism, in which the His residue conserved among the α-oxamine synthase family enzymes plays a central and critical role. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.


Asunto(s)
Serina C-Palmitoiltransferasa/metabolismo , Ácidos Carboxílicos/metabolismo , Modelos Moleculares , Protones , Serina C-Palmitoiltransferasa/química , Especificidad por Sustrato
5.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 12): 408-415, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458620

RESUMEN

Serine palmitoyltransferase (SPT) catalyses the first reaction in sphingolipid biosynthesis: the decarboxylative condensation of L-serine (L-Ser) and palmitoyl-CoA to form 3-ketodihydrosphingosine. SPT from Sphingobacterium multivorum has been isolated and its crystal structure in complex with L-Ser has been determined at 2.3 Šresolution (PDB entry 3a2b). However, the quality of the crystal was not good enough to judge the conformation of the cofactor molecule and the orientations of the side chains of the amino-acid residues in the enzyme active site. The crystal quality was improved by revision of the purification procedure and by optimization of both the crystallization procedure and the post-crystallization treatment conditions. Here, the crystal structure of SPT complexed with tris(hydroxymethyl)aminomethane (Tris), a buffer component, was determined at 1.65 Šresolution. The protein crystallized at 20°C and diffraction data were collected from the crystals to a resolution of 1.65 Å. The crystal belonged to the tetragonal space group P41212, with unit-cell parameters a = b = 61.32, c = 208.57 Å. Analysis of the crystal structure revealed C4-C5-C5A-O4P (77°) and C5-C5A-O4P-P (-143°) torsion angles in the phosphate-group moiety of the cofactor pyridoxal 5'-phosphate (PLP) that are more reasonable than those observed in the previously reported crystal structure (14° and 151°, respectively). Furthermore, the clear electron density showing a Schiff-base linkage between PLP and the bulky artificial ligand Tris indicated exceptional flexibility of the active-site cavity of this enzyme. These findings open up the possibility for further study of the detailed mechanisms of substrate recognition and catalysis by this enzyme.


Asunto(s)
Serina C-Palmitoiltransferasa , Trometamina , Cristalografía por Rayos X , Fosfato de Piridoxal , Serina
7.
J Biochem ; 165(2): 185-195, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423116

RESUMEN

Homoserine dehydrogenase from Thermus thermophilus (TtHSD) is a key enzyme in the aspartate pathway that catalyses the reversible conversion of l-aspartate-ß-semialdehyde to l-homoserine (l-Hse) with NAD(P)H. We determined the crystal structures of unliganded TtHSD, TtHSD complexed with l-Hse and NADPH, and Lys99Ala and Lys195Ala mutant TtHSDs, which have no enzymatic activity, complexed with l-Hse and NADP+ at 1.83, 2.00, 1.87 and 1.93 Å resolutions, respectively. Binding of l-Hse and NADPH induced the conformational changes of TtHSD from an open to a closed form: the mobile loop containing Glu180 approached to fix l-Hse and NADPH, and both Lys99 and Lys195 could make hydrogen bonds with the hydroxy group of l-Hse. The ternary complex of TtHSDs in the closed form mimicked a Michaelis complex better than the previously reported open form structures from other species. In the crystal structure of Lys99Ala TtHSD, the productive geometry of the ternary complex was almost preserved with one new water molecule taking over the hydrogen bonds associated with Lys99, while the positions of Lys195 and l-Hse were significantly retained with those of the wild-type enzyme. These results propose new possibilities that Lys99 is the acid-base catalytic residue of HSDs.


Asunto(s)
Homoserina Deshidrogenasa/química , Homoserina/química , NADP/química , Cristalografía por Rayos X , Homoserina/metabolismo , Homoserina Deshidrogenasa/metabolismo , Modelos Moleculares , NADP/metabolismo , Conformación Proteica , Thermus thermophilus/enzimología
8.
Sci Rep ; 8(1): 14228, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242198

RESUMEN

The biosynthesis of heme is strictly regulated, probably because of the toxic effects of excess heme and its biosynthetic precursors. In many organisms, heme biosynthesis starts with the production of 5-aminolevulinic acid (ALA) from glycine and succinyl-coenzyme A, a process catalyzed by a homodimeric enzyme, pyridoxal 5'-phosphate (PLP)-dependent 5-aminolevulinate synthase (ALAS). ALAS activity is negatively regulated by heme in various ways, such as the repression of ALAS gene expression, degradation of ALAS mRNA, and inhibition of mitochondrial translocation of the mammalian precursor protein. There has been no clear evidence, however, that heme directly binds to ALAS to negatively regulate its activity. We found that recombinant ALAS from Caulobacter crescentus was inactivated via a heme-mediated feedback manner, in which the essential coenzyme PLP was rel eased to form the inactive heme-bound enzyme. The spectroscopic properties of the heme-bound ALAS showed that a histidine-thiolate hexa-coordinated ferric heme bound to each subunit with a one-to-one stoichiometry. His340 and Cys398 were identified as the axial ligands of heme, and mutant ALASs lacking either of these ligands became resistant to heme-mediated inhibition. ALAS expressed in C. crescentus was also found to bind heme, suggesting that heme-mediated feedback inhibition of ALAS is physiologically relevant in C. crescentus.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Caulobacter crescentus/metabolismo , Hemo/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Histidina/metabolismo , Humanos , Ligandos , Fosfato de Piridoxal/metabolismo , ARN Mensajero/metabolismo
10.
Biochim Biophys Acta ; 1647(1-2): 116-20, 2003 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-12686119

RESUMEN

Serine palmitoyltransferase (SPT, EC 2.3.1.50) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of L-serine and palmitoyl coenzyme A (CoA) to 3-ketodihydrosphingosine (KDS). We found that the gram-negative obligatory aerobic bacteria Sphingomonas paucimobilis EY2395(T) have significant SPT activity, and purified SPT to homogeneity. Unlike eukaryotic enzymes, this enzyme was a water-soluble homodimeric protein. We isolated the SPT gene encoding 420 amino acid residues (M(r) 45,041) and succeeded in overproducing the SPT protein in Escherichia coli, in which the product amounted to about 10-20% of the total protein of the cell extract. Sphingomonas SPT showed about 30% homology with the enzymes of the alpha-oxamine synthase family, and amino acid residues supposed to be involved in catalysis are conserved. The purified recombinant-SPT showed the characteristic absorption spectrum derived from its coenzyme pyridoxal 5'-phosphate (PLP). The addition of the substrate, L-serine, caused spectral changes indicating the formation of the external aldimine intermediate. Sphingomonas SPT is a prototype of the eukaryotic enzyme and would be a useful model to elucidate the reaction mechanism of SPT.


Asunto(s)
Aciltransferasas/genética , Proteínas Bacterianas/genética , Sphingomonas/enzimología , Aciltransferasas/química , Aciltransferasas/aislamiento & purificación , Secuencia de Aminoácidos , Clonación Molecular , Dimerización , Escherichia coli/genética , Datos de Secuencia Molecular , Proteínas Recombinantes/biosíntesis , Serina C-Palmitoiltransferasa
11.
Biochim Biophys Acta ; 1647(1-2): 103-9, 2003 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-12686117

RESUMEN

The notion of "ground-state destabilization" has been well documented in enzymology. It is the unfavourable interaction (strain) in the enzyme-substrate complex, and increases the k(cat) value without changing the k(cat)/K(m) value. During the course of the investigation on the reaction mechanism of aspartate aminotransferase (AAT), we found another type of strain that is crucial for catalysis: the strain of the distorted internal aldimine in the unliganded enzyme. This strain raises the energy level of the starting state (E+S), thereby reducing the energy gap between E+S and ES(++) and increasing the k(cat)/K(m) value. Further analysis on the reaction intermediates showed that the Michaelis complex of AAT with aspartate contains strain energy due to an unfavourable interaction between the main chain carbonyl oxygen and the Tyr225-aldimine hydrogen-bonding network. This belongs to the classical type of strain. In each case, the strain is reflected in the pK(a) value of the internal aldimine. In the historical explanation of the reaction mechanism of AAT, the shifts in the aldimine pK(a) have been considered to be the driving forces for the proton transfer during catalysis. However, the above findings indicate that the true driving forces are the strain energy inherent to the respective intermediates. We describe here how these strain energies are generated and are used for catalysis, and show that variations in the aldimine pK(a) during catalysis are no more than phenomenological results of adjusting the energy levels of the reaction intermediates for efficient catalysis.


Asunto(s)
Aspartato Aminotransferasas/química , Aspartato Aminotransferasas/metabolismo , Catálisis , Enlace de Hidrógeno , Termodinámica
13.
FEBS Lett ; 585(12): 1729-34, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21514297

RESUMEN

All sphingolipid-producing organisms require the pyridoxal 5'-phosphate (PLP)-dependent serine palmitoyltransferase (SPT) to catalyse the first reaction on the de novo sphingolipid biosynthetic pathway. SPT is a member of the alpha oxoamine synthase (AOS) family that catalyses a Claisen-like condensation of palmitoyl-CoA and L-serine to form 3-ketodihydrosphingosine (KDS). Protein sequence alignment across various species reveals an arginine residue, not involved in PLP binding, to be strictly conserved in all prokaryotic SPTs, the lcb2 subunits of eukaryotic SPTs and all members of the AOS family. Here we use UV-vis spectroscopy and site-directed mutagenesis, in combination with a substrate analogue, to show that the equivalent residue (R370) in the SPT from Sphingomonas wittichii is required to form the key PLP:L-serine quinonoid intermediate that condenses with palmitoyl-CoA and thus plays an essential role enzyme catalysis.


Asunto(s)
Arginina/fisiología , Serina C-Palmitoiltransferasa/metabolismo , Sphingomonas/enzimología , Catálisis , Mutagénesis Sitio-Dirigida , Palmitoil Coenzima A , Serina C-Palmitoiltransferasa/química , Análisis Espectral , Especificidad por Sustrato
14.
J Biol Chem ; 284(23): 15487-95, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19346561

RESUMEN

Serine palmitoyltransferase (SPT) belongs to the fold type I family of the pyridoxal 5'-phosphate (PLP)-dependent enzyme and forms 3-ketodihydrosphingosine (KDS) from l-serine and palmitoyl-CoA. Like other alpha-oxamine synthase subfamily enzymes, SPT is different from most of the fold type I enzymes in that its re face of the PLP-Lys aldimine is occupied by a His residue (His(159)) instead of an aromatic amino acid residue. His(159) was changed into alanine or aromatic amino acid residues to examine its role during catalysis. All mutant SPTs formed the PLP-l-serine aldimine with dissociation constants several 10-fold higher than that of the wild type SPT and catalyzed the abortive transamination of l-serine. These results indicate that His(159) is not only the anchoring site for l-serine but regulates the alpha-deprotonation of l-serine by fixing the conformation of the PLP-l-serine aldimine to prevent unwanted side reactions. Only H159A SPT retained activity and showed a prominent 505-nm absorption band of the quinonoid species during catalysis. Global analysis of the time-resolved spectra suggested the presence of the two quinonoid intermediates, the first formed from the PLP-l-serine aldimine and the second from the PLP-KDS aldimine. Accumulation of these quinonoid intermediates indicated that His(159) promotes both the Claisen-type condensation as an acid catalyst and the protonation at Calpha of the second quinonoid to form the PLP-KDS aldimine. These results, combined with the previous model building study (Ikushiro, H., Fujii, S., Shiraiwa, Y., and Hayashi, H. (2008) J. Biol. Chem. 283, 7542-7553), lead us to propose a novel mechanism, in which His(159) plays multiple roles by exploiting the stereochemistry of Dunathan's conjecture.


Asunto(s)
Histidina , Serina C-Palmitoiltransferasa/metabolismo , Alanina , Sustitución de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Catálisis , Cinética , Palmitoil Coenzima A/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/genética , Especificidad por Sustrato
15.
J Biochem ; 146(4): 549-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19564159

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis and catalyses the pyridoxal 5'-phosphate (PLP)-dependent decarboxylative condensation reaction of l-serine with palmitoyl-CoA to generate 3-ketodihydrosphingosine. The crystal structure of SPT from Sphingobacterium multivorum GTC97 complexed with l-serine was determined at 2.3 A resolution. The electron density map showed the Schiff base formation between l-serine and PLP in the crystal. Because of the hydrogen bond formation with His138, the orientation of the Calpha-H bond of the PLP-l-serine aldimine was not perpendicular to the PLP-Schiff base plane. This conformation is unfavourable for the alpha-proton abstraction by Lys244 and the reaction is expected to stop at the PLP-l-serine aldimine. Structural modelling of the following intermediates indicated that His138 changes its hydrogen bond partner from the carboxyl group of l-serine to the carbonyl group of palmitoyl-CoA upon the binding of palmitoyl-CoA, making the l-serine Calpha-H bond perpendicular to the PLP-Schiff base plane. These crystal and model structures well explained the observations on bacterial SPTs that the alpha-deprotonation of l-serine occurs only in the presence of palmitoyl-CoA. This study provides the structural evidence that directly supports our proposed mechanism of the substrate synergism in the SPT reaction.


Asunto(s)
Serina C-Palmitoiltransferasa/química , Sphingobacterium/enzimología , Catálisis , Cristalografía por Rayos X , Modelos Moleculares , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Serina/química , Serina C-Palmitoiltransferasa/metabolismo , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/síntesis química , Esfingosina/química
16.
J Biol Chem ; 283(12): 7542-53, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18167344

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis and catalyzes the pyridoxal 5'-phosphate (PLP)-dependent decarboxylative condensation reaction of l-serine with palmitoyl-CoA to generate 3-ketodihydrosphingosine. The binding of l-serine alone to SPT leads to the formation of the external aldimine but does not produce a detectable amount of the quinonoid intermediate. However, the further addition of S-(2-oxoheptadecyl)-CoA, a nonreactive analogue of palmitoyl-CoA, caused the apparent accumulation of the quinonoid. NMR studies showed that the hydrogen-deuterium exchange at Calpha of l-serine is very slow in the SPT-l-serine external aldimine complex, but the rate is 100-fold increased by the addition of S-(2-oxoheptadecyl)-CoA, showing a remarkable substrate synergism in SPT. In addition, the observation that the nonreactive palmitoyl-CoA facilitated alpha-deprotonation indicates that the alpha-deprotonation takes place before the Claisen-type C-C bond formation, which is consistent with the accepted mechanism of the alpha-oxamine synthase subfamily enzymes. Structural modeling of both the SPT-l-serine external aldimine complex and SPT-l-serine-palmitoyl-CoA ternary complex suggests a mechanism in which the binding of palmitoyl-CoA to SPT induced a conformation change in the PLP-l-serine external aldimine so that the Calpha-H bond of l-serine becomes perpendicular to the plane of the PLP-pyridine ring and is favorable for the alpha-deprotonation. The model also proposed that the two alternative hydrogen bonding interactions of His(159) with l-serine and palmitoyl-CoA play an important role in the conformational change of the external aldimine. This is the unique mechanism of SPT that prevents the formation of the reactive intermediate before the binding of the second substrate.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Modelos Moleculares , Palmitoil Coenzima A/química , Serina C-Palmitoiltransferasa/química , Proteínas Bacterianas/metabolismo , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Palmitoil Coenzima A/análogos & derivados , Palmitoil Coenzima A/metabolismo , Estructura Terciaria de Proteína/fisiología , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/biosíntesis , Esfingolípidos/química , Especificidad por Sustrato/fisiología
17.
J Bacteriol ; 189(15): 5749-61, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17557831

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of l-serine and palmitoyl coenzyme A (CoA) to form 3-ketodihydrosphingosine (KDS). Eukaryotic SPTs comprise tightly membrane-associated heterodimers belonging to the pyridoxal 5'-phosphate (PLP)-dependent alpha-oxamine synthase family. Sphingomonas paucimobilis, a sphingolipid-containing bacterium, contains an abundant water-soluble homodimeric SPT of the same family (H. Ikushiro et al., J. Biol. Chem. 276:18249-18256, 2001). This enzyme is suitable for the detailed mechanistic studies of SPT, although single crystals appropriate for high-resolution crystallography have not yet been obtained. We have now isolated three novel SPT genes from Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Bdellovibrio stolpii, respectively. Each gene product exhibits an approximately 30% sequence identity to both eukaryotic subunits, and the putative catalytic amino acid residues are conserved. All bacterial SPTs were successfully overproduced in Escherichia coli and purified as water-soluble active homodimers. The spectroscopic properties of the purified SPTs are characteristic of PLP-dependent enzymes. The KDS formation by the bacterial SPTs was confirmed by high-performance liquid chromatography/mass spectrometry. The Sphingobacterium SPTs obeyed normal steady-state ordered Bi-Bi kinetics, while the Bdellovibrio SPT underwent a remarkable substrate inhibition at palmitoyl CoA concentrations higher than 100 microM, as does the eukaryotic enzyme. Immunoelectron microscopy showed that unlike the cytosolic Sphingomonas SPT, S. multivorum and Bdellovibrio SPTs were bound to the inner membrane of cells as peripheral membrane proteins, indicating that these enzymes can be a prokaryotic model mimicking the membrane-associated eukaryotic SPT.


Asunto(s)
Proteínas Bacterianas/genética , Bdellovibrio/enzimología , Membrana Celular/química , Proteínas de la Membrana/genética , Serina C-Palmitoiltransferasa/genética , Sphingobacterium/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Dominio Catalítico/genética , Clonación Molecular , Secuencia Conservada , ADN Bacteriano/química , ADN Bacteriano/genética , Dimerización , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucariotas/enzimología , Expresión Génica , Cinética , Espectrometría de Masas , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Palmitoil Coenzima A/farmacología , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/aislamiento & purificación , Espectrofotometría , Esfingosina/análogos & derivados , Esfingosina/metabolismo
18.
Biochemistry ; 44(23): 8218-29, 2005 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-15938611

RESUMEN

The mechanism for the reaction of aspartate aminotransferase with the C4 substrate, l-aspartate, has been well established. The binding of the C4 substrate induces conformational change in the enzyme from the open to the closed form, and the entire reaction proceeds in the closed form of the enzyme. On the contrary, little is known about the reaction with the C5 substrate, l-glutamate. In this study, we analyzed the pH-dependent binding of 2-methyl-l-glutamate to the enzyme and showed that the interaction between the amino group of 2-methyl-l-glutamate and the pyridoxal 5'-phosphate aldimine is weak compared to that between 2-methyl-l-aspartate and the aldimine. The structures of the Michaelis complexes of the enzyme with l-aspartate and l-glutamate were modeled on the basis of the maleate and glutarate complex structures of the enzyme. The result showed that l-glutamate binds to the open form of the enzyme in an extended conformation, and its alpha-amino group points in the opposite direction of the aldimine, while that of l-aspartate is close to the aldimine. These models explain the observations for 2-methyl-l-glutamate and 2-methyl-l-aspartate. The crystal structures of the complexes of aspartate aminotransferase with phosphopyridoxyl derivatives of l-glutamate, d-glutamate, and 2-methyl-l-glutamate were solved as the models for the external aldimine and ketimine complexes of l-glutamate. All the structures were in the closed form, and the two carboxylate groups and the arginine residues binding them are superimposable on the external aldimine complex with 2-methyl-l-aspartate. Taking these facts altogether, it was strongly suggested that the binding of l-glutamate to aspartate aminotransferase to form the Michaelis complex does not induce a conformational change in the enzyme, and that the conformational change to the closed form occurs during the transaldimination step. The hydrophobic residues of the entrance of the active site, including Tyr70, are considered to be important for promoting the transaldimination process and hence the recognition of the C5 substrate.


Asunto(s)
Aminoácidos Dicarboxílicos/química , Aspartato Aminotransferasas/química , Proteínas de Escherichia coli/química , Iminas/química , Aminas/química , Aminoácidos Dicarboxílicos/metabolismo , Aspartato Aminotransferasas/metabolismo , Ácido Aspártico/química , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Glutamatos/química , Ácido Glutámico/química , Concentración de Iones de Hidrógeno , Ligandos , Modelos Químicos , N-Metilaspartato/análogos & derivados , N-Metilaspartato/química , Conformación Proteica , Especificidad por Sustrato
19.
Biochemistry ; 43(4): 1082-92, 2004 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-14744154

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of L-serine and palmitoyl coenzyme A to 3-ketodihydrosphingosine. We have succeeded in the overproduction of a water-soluble homodimeric SPT from Sphingomonas paucimobilis EY2395(T) in Escherichia coli. The recombinant SPT showed the characteristic absorption and circular dichroism spectra derived from its coenzyme pyridoxal 5'-phosphate. On the basis of the spectral changes of SPT, we have analyzed the reactions of SPT with compounds related to L-serine and product, and showed the following new aspects: First, we analyzed the binding of L-serine and 3-hydroxypropionate and found that the spectral change in SPT by the substrate is caused by the formation of an external aldimine intermediate and not by the formation of the Michaelis complex. Second, various serine analogues were also examined; the data indicated that the alpha-carboxyl group of L-serine was quite important for substrate recognition by SPT. Third, we focused on a series of SPT inhibitors, which have been used as convenient tools to study the cell responses caused by sphingolipid depletion. The interaction of SPT with myriocin suggested that such product-related compounds would strongly and competitively inhibit enzyme activity by forming an external aldimine in the active site of the enzyme. Beta-chloro-L-alanine and L-cycloserine were found to generate characteristic PLP-adducts that produced inactivation of SPT in an irreversible manner. The detailed mechanisms for the SPT inactivation were discussed. This is the first analysis of the inhibition mechanisms of SPT by these compounds, which will provide an enzymological basis for the interpretation of the results from cell biological experiments.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/química , Inhibidores Enzimáticos/química , Ácido Láctico/análogos & derivados , Serina/análogos & derivados , Serina/química , beta-Alanina/análogos & derivados , Aciltransferasas/aislamiento & purificación , Dicroismo Circular , Cicloserina/química , Escherichia coli/enzimología , Escherichia coli/genética , Ácido Láctico/química , Fosfoserina/química , Propanolaminas , Glicoles de Propileno/química , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Serina C-Palmitoiltransferasa , Espectrometría de Fluorescencia , Espectrofotometría , Sphingomonas/enzimología , Estereoisomerismo , Especificidad por Sustrato , beta-Alanina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA