Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 32(6): 1263-72, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10383766

RESUMEN

A variety of stress factors induces transcription via the stress response element (STRE) present in control regions of a number of genes of the yeast Saccharomyces cerevisiae. Induction of transcription involves nuclear translocation of the STRE-binding transcription activators Msn2p and Msn4p. The primary cellular events triggering this translocation are presently not well understood. In this investigation, we have observed that a number of factors acting at the level of the yeast plasma membrane, including the antifungal agent nystatin, the steroidal alkaloid tomatine, benzyl alcohol, a number of detergents and the plasma membrane H+-ATPase inhibitor diethylstilbestrol or mutations in the PMA1 gene encoding the plasma membrane ATPase, induce Msn2p nuclear accumulation and STRE-dependent transcription. At least some of the stress factors acting via STREs cause an increase in plasma membrane permeability, leading to a decrease in membrane potential, which might be a primary cellular stress signal. A decrease in internal pH triggered by permeabilization of the plasma membrane or a change in cAMP levels are at least not obligatory factors in intracellular stress signal transduction. The signal transduction pathway transmitting the signal generated at the plasma membrane to Msn2p is still unknown.


Asunto(s)
Antifúngicos/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Elementos de Respuesta , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcripción Genética/efectos de los fármacos , Ácidos , Adenosina Trifosfatasas/antagonistas & inhibidores , Transporte Biológico , Membrana Celular , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dietilestilbestrol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes , Líquido Intracelular , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mutagénesis , Nistatina/farmacología , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
2.
Eur J Biochem ; 227(3): 657-62, 1995 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-7532584

RESUMEN

Ribonuclease mitochondrial RNA processing cleaves RNAs from the mammalian mitochondrial main non-coding regulatory region, called the displacement loop. Our data demonstrate that rat cells contain a site-specific ribonuclease mitochondrial RNA processing activity. We found that this enzyme processes the rat mitochondrial displacement-loop RNA substrate at the level of the conserved sequence block 1, a result which is different from that for mouse. This finding correlates with the in-vivo transcriptional analysis of the rat displacement-loop region. Processing by homologous and heterologous ribonuclease mitochondrial RNA enzymes occurs in the same manner, suggesting a conserved mode of substrate recognition.


Asunto(s)
Replicación del ADN , ARN/metabolismo , Ribonucleasas/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Humanos , Técnicas In Vitro , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Procesamiento Postranscripcional del ARN , ARN Mitocondrial , Ratas , Especificidad por Sustrato
3.
J Biol Chem ; 274(39): 27567-72, 1999 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-10488093

RESUMEN

The complex eukaryotic initiation factor 3 (eIF3) was shown to promote the formation of the 43 S preinitiation complex by dissociating 40 S and 60 S ribosomal subunits, stabilizing the ternary complex, and aiding mRNA binding to 40 S ribosomal subunits. Recently, we described the identification of RPG1 (TIF32), the p110 subunit of the eIF3 core complex in yeast. In a screen for Saccharomyces cerevisiae multicopy suppressors of the rpg1-1 temperature-sensitive mutant, an unknown gene corresponding to the open reading frame YLR192C was identified. When overexpressed, the 30-kDa gene product, named Hcr1p, was able to support, under restrictive conditions, growth of the rpg1-1 temperature-sensitive mutant, but not of a Rpg1p-depleted mutant. An hcr1 null mutant was viable, but showed slight reduction of growth when compared with the wild-type strain. Physical interaction between the Hcr1 and Rpg1 proteins was shown by co-immunoprecipitation analysis. The combination of Deltahcr1 and rpg1-1 mutations resulted in a synthetic enhancement of the slow growth phenotype at a semipermissive temperature. In a computer search, a significant homology to the human p35 subunit of the eIF3 complex was found. We assume that the yeast Hcr1 protein participates in translation initiation likely as a protein associated with the eIF3 complex.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Iniciación de Péptidos/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Factor 3 de Iniciación Eucariótica , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Humanos , Cinética , Sustancias Macromoleculares , Datos de Secuencia Molecular , Mutagénesis , Factores de Iniciación de Péptidos/química , Fenotipo , Factor 3 Procariótico de Iniciación , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Temperatura
4.
J Biol Chem ; 276(40): 37335-40, 2001 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-11489905

RESUMEN

Polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5 (n-3)) inhibit T lymphocyte activation probably by displacing acylated signaling proteins from membrane lipid rafts. Under physiological conditions, saturated fatty acyl residues of such proteins partition into the cytoplasmic membrane lipid leaflet with high affinity for rafts that are enriched in saturated fatty acyl-containing lipids. However, the biochemical alteration causing displacement of acylated proteins from rafts in PUFA-treated T cells is still under debate but could principally be attributed to altered protein acylation or changes in raft lipid composition. We show that treatment of Jurkat T cells with polyunsaturated eicosapentaenoic acid (20:5 (n-3)) results in marked enrichment of PUFAs (20:5; 22:5) in lipids from isolated rafts. Moreover, PUFAs were significantly incorporated into phosphatidylethanolamine that predominantly resides in the cytoplasmic membrane lipid leaflet. Notably, palmitate-labeled Src family kinase Lck and the linker for activation of T cells (LAT) were both displaced from lipid rafts indicating that acylation by PUFAs is not required for protein displacement from rafts in PUFA-treated T cells. In conclusion, these data provide strong evidence that displacement of acylated proteins from rafts in PUFA-treated T cells is predominantly due to altered raft lipid composition.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Microdominios de Membrana/química , Acilación , Membrana Celular/química , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Humanos , Células Jurkat , Lípidos/química , Microdominios de Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA