Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Psychiatry ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811690

RESUMEN

Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Genetic risk loci for white matter hyperintensities (WMH), the most common MRI-marker of cSVD in older age, were recently shown to be significantly associated with white matter (WM) microstructure on diffusion tensor imaging (signal-based) in young adults. To provide new insights into these early changes in WM microstructure and their relation with cSVD, we sought to explore the genetic underpinnings of cutting-edge tissue-based diffusion imaging markers across the adult lifespan. We conducted a genome-wide association study of neurite orientation dispersion and density imaging (NODDI) markers in young adults (i-Share study: N = 1 758, (mean[range]) 22.1[18-35] years), with follow-up in young middle-aged (Rhineland Study: N = 714, 35.2[30-40] years) and late middle-aged to older individuals (UK Biobank: N = 33 224, 64.3[45-82] years). We identified 21 loci associated with NODDI markers across brain regions in young adults. The most robust association, replicated in both follow-up cohorts, was with Neurite Density Index (NDI) at chr5q14.3, a known WMH locus in VCAN. Two additional loci were replicated in UK Biobank, at chr17q21.2 with NDI, and chr19q13.12 with Orientation Dispersion Index (ODI). Transcriptome-wide association studies showed associations of STAT3 expression in arterial and adipose tissue (chr17q21.2) with NDI, and of several genes at chr19q13.12 with ODI. Genetic susceptibility to larger WMH volume, but not to vascular risk factors, was significantly associated with decreased NDI in young adults, especially in regions known to harbor WMH in older age. Individually, seven of 25 known WMH risk loci were associated with NDI in young adults. In conclusion, we identified multiple novel genetic risk loci associated with NODDI markers, particularly NDI, in early adulthood. These point to possible early-life mechanisms underlying cSVD and to processes involving remyelination, neurodevelopment and neurodegeneration, with a potential for novel approaches to prevention.

2.
Psychol Med ; 53(4): 1611-1619, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34412712

RESUMEN

BACKGROUND: Schizophrenia is a heterogeneous disorder with substantial heritability. The use of endophenotypes may help clarify its aetiology. Measures from the smooth pursuit and antisaccade eye movement tasks have been identified as endophenotypes for schizophrenia in twin and family studies. However, the genetic basis of the overlap between schizophrenia and these oculomotor markers is largely unknown. Here, we tested whether schizophrenia polygenic risk scores (PRS) were associated with oculomotor performance in the general population. METHODS: Analyses were based on the data of 2956 participants (aged 30-95) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Genotyping was performed on Omni-2.5 exome arrays. Using summary statistics from a recent meta-analysis based on the two largest schizophrenia genome-wide association studies to date, we quantified genetic risk for schizophrenia by creating PRS at different p value thresholds for genetic markers. We examined associations between PRS and oculomotor performance using multivariable regression models. RESULTS: Higher PRS were associated with higher antisaccade error rate and latency, and lower antisaccade amplitude gain. PRS showed inconsistent patterns of association with smooth pursuit velocity gain and were not associated with saccade rate during smooth pursuit or performance on a prosaccade control task. CONCLUSIONS: There is an overlap between genetic determinants of schizophrenia and oculomotor endophenotypes. Our findings suggest that the mechanisms that underlie schizophrenia also affect oculomotor function in the general population.


Asunto(s)
Movimientos Oculares , Esquizofrenia , Humanos , Esquizofrenia/genética , Endofenotipos , Estudio de Asociación del Genoma Completo , Estudios de Cohortes , Factores de Riesgo
3.
Geroscience ; 46(2): 1947-1970, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37782440

RESUMEN

Shorter leukocyte telomere length (LTL) is associated with cardiovascular dysfunction. Whether this association differs between measured and genetically predicted LTL is still unclear. Moreover, the molecular processes underlying the association remain largely unknown. We used baseline data of the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany [56.2% women, age: 55.5 ± 14.0 years (range 30 - 95 years)]. We calculated genetically predicted LTL in 4180 participants and measured LTL in a subset of 1828 participants with qPCR. Using multivariable regression, we examined the association of measured and genetically predicted LTL, and the difference between measured and genetically predicted LTL (ΔLTL), with four vascular functional domains and the overall vascular health. Moreover, we performed epigenome-wide association studies of three LTL measures. Longer measured LTL was associated with better microvascular and cardiac function. Longer predicted LTL was associated with better cardiac function. Larger ΔLTL was associated with better microvascular and cardiac function and overall vascular health, independent of genetically predicted LTL. Several CpGs were associated (p < 1e-05) with measured LTL (n = 5), genetically predicted LTL (n = 8), and ΔLTL (n = 27). Genes whose methylation status was associated with ΔLTL were enriched in vascular endothelial signaling pathways and have been linked to environmental exposures, cardiovascular diseases, and mortality. Our findings suggest that non-genetic causes of LTL contribute to microvascular and cardiac function and overall vascular health, through an effect on the vascular endothelial signaling pathway. Interventions that counteract LTL may thus improve vascular function.


Asunto(s)
Leucocitos , Telómero , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Estudios de Cohortes , Estudios Longitudinales , Fenotipo , Leucocitos/metabolismo , Telómero/genética
4.
Transl Psychiatry ; 12(1): 337, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35982049

RESUMEN

To identify cognitive measures that may be particularly sensitive to early cognitive decline in preclinical Alzheimer's disease (AD), we investigated the relation between genetic risk for AD and cognitive task performance in a large population-based cohort study. We measured performance on memory, processing speed, executive function, crystallized intelligence and eye movement tasks in 5182 participants of the Rhineland Study, aged 30 to 95 years. We quantified genetic risk for AD by creating three weighted polygenic risk scores (PRS) based on the genome-wide significant single-nucleotide polymorphisms coming from three different genetic association studies. We assessed the relation of AD PRS with cognitive performance using generalized linear models. Three PRS were associated with lower performance on the Corsi forward task, and two PRS were associated with a lower probability of correcting antisaccade errors, but none of these associations remained significant after correction for multiple testing. Associations between age and trail-making test A (TMT-A) performance were modified by AD genetic risk, with individuals at high genetic risk showing the strongest association. We conclude that no single measure of our cognitive test battery robustly captures genetic liability for AD as quantified by current PRS. However, Corsi forward performance and the probability of correcting antisaccade errors may represent promising candidates whose ability to capture genetic liability for AD should be investigated further. Additionally, our finding on TMT-A performance suggests that processing speed represents a sensitive marker of AD genetic risk in old age and supports the processing speed theory of age-related cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/complicaciones , Cognición , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/genética , Estudios de Cohortes , Movimientos Oculares , Humanos
5.
Nat Commun ; 13(1): 4505, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922433

RESUMEN

Aortic dimensions and distensibility are key risk factors for aortic aneurysms and dissections, as well as for other cardiovascular and cerebrovascular diseases. We present genome-wide associations of ascending and descending aortic distensibility and area derived from cardiac magnetic resonance imaging (MRI) data of up to 32,590 Caucasian individuals in UK Biobank. We identify 102 loci (including 27 novel associations) tagging genes related to cardiovascular development, extracellular matrix production, smooth muscle cell contraction and heritable aortic diseases. Functional analyses highlight four signalling pathways associated with aortic distensibility (TGF-ß, IGF, VEGF and PDGF). We identify distinct sex-specific associations with aortic traits. We develop co-expression networks associated with aortic traits and apply phenome-wide Mendelian randomization (MR-PheWAS), generating evidence for a causal role for aortic distensibility in development of aortic aneurysms. Multivariable MR suggests a causal relationship between aortic distensibility and cerebral white matter hyperintensities, mechanistically linking aortic traits and brain small vessel disease.


Asunto(s)
Aneurisma de la Aorta , Sustancia Blanca , Aorta/diagnóstico por imagen , Aneurisma de la Aorta/diagnóstico por imagen , Aneurisma de la Aorta/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Fenómica , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA