Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38695275

RESUMEN

We isolated and described a yellow-pigmented strain of bacteria (strain 9143T), originally characterized as an endohyphal inhabitant of an endophytic fungus in the Ascomycota. Although the full-length sequence of its 16S rRNA gene displays 99 % similarity to Luteibacter pinisoli, genomic hybridization demonstrated <30 % genomic similarity between 9143T and its closest named relatives, further supported by average nucleotide identity results. This and related endohyphal strains form a well-supported clade separate from L. pinisoli and other validly named species including the most closely related Luteibacter rhizovicinus. The name Luteibacter mycovicinus sp. nov. is proposed, with type strain 9143T (isolate DBL433), for which a genome has been sequenced and is publicly available from the American Type Culture Collection (ATCC TSD-257T) and from the Leibniz Institute DSMZ (DSM 112764T). The type strain reliably forms yellow colonies across diverse media and growth conditions (lysogeny broth agar, King's Medium B, potato dextrose agar, trypticase soy agar and Reasoner's 2A (R2A) agar). It forms colonies readily at 27 °C on agar with a pH of 6-8, and on salt (NaCl) concentrations up to 2 %. It lacks the ability to utilize sulphate as a sulphur source and thus only forms colonies on minimal media if supplemented with alternative sulphur sources. It is catalase-positive and oxidase-negative. Although it exhibits a single polar flagellum, motility was only clearly visible on R2A agar. Its host range and close relatives, which share the endohyphal lifestyle, are discussed.


Asunto(s)
Ascomicetos , Técnicas de Tipificación Bacteriana , ADN Bacteriano , Endófitos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Simbiosis , ARN Ribosómico 16S/genética , Ascomicetos/genética , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , ADN Bacteriano/genética , Endófitos/genética , Endófitos/clasificación , Endófitos/aislamiento & purificación , Hibridación de Ácido Nucleico , Ácidos Grasos , Composición de Base , Pigmentos Biológicos/metabolismo
2.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34731078

RESUMEN

A growing interest in fungi that occur within symptom-less plants and lichens (endophytes) has uncovered previously uncharacterized species in diverse biomes worldwide. In many temperate and boreal forests, endophytic Coniochaeta (Sacc.) Cooke (Coniochaetaceae, Coniochaetales, Sordariomycetes, Ascomycota) are commonly isolated on standard media, but rarely are characterized. We examined 26 isolates of Coniochaeta housed at the Gilbertson Mycological Herbarium. The isolates were collected from healthy photosynthetic tissues of conifers, angiosperms, mosses and lichens in Canada, Sweden and the United States. Their barcode sequences (nuclear ribosomal internal transcribed spacer and 5.8S; ITS rDNA) were ≤97% similar to any documented species available through GenBank. Phylogenetic analyses based on two loci (ITS rDNA and translation elongation factor 1-alpha) indicated that two isolates represented Coniochaeta cymbiformispora, broadening the ecological niche and geographic range of a species known previously from burned soil in Japan. The remaining 24 endophytes represented three previously undescribed species that we characterize here: Coniochaeta elegans sp. nov., Coniochaeta montana sp. nov. and Coniochaeta nivea sp. nov. Each has a wide host range, including lichens, bryophytes and vascular plants. C. elegans sp. nov. and C. nivea sp. nov. have wide geographic ranges. C. montana sp. nov. occurs in the Madrean biome of Arizona (USA), where it is sympatric with the other species described here. All three species display protease, chitinase and cellulase activity in vitro. Overall, this study provides insight into the ecological and evolutionary diversity of Coniochaeta and suggests that these strains may be amenable for studies of traits relevant to a horizontally transmitted, symbiotic lifestyle.


Asunto(s)
Ascomicetos , Filogenia , Animales , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Canadá , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Endófitos/clasificación , Endófitos/aislamiento & purificación , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN , Suecia , Estados Unidos
3.
BMC Plant Biol ; 19(1): 374, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451107

RESUMEN

Following publication of the original article [1], the author reported a processing error in Figure 5. This has been corrected in the original article.

4.
BMC Plant Biol ; 19(1): 305, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291883

RESUMEN

BACKGROUND: Verticillium wilt caused by the fungus Verticillium dahliae race 1 is among the top disease concerns for lettuce in the Salinas and Pajaro Valleys of coastal central California. Resistance of lettuce against V. dahliae race 1 was previously mapped to the single dominant Verticillium resistance 1 (Vr1) locus. Lines of tomato resistant to race 1 are known to contain the closely linked Ve1 and Ve2 genes that encode receptor-like proteins with extracellular leucine-rich repeats; the Ve1 and Ve2 proteins act antagonistically to provide resistance against V. dahliae race 1. The Vr1 locus in lettuce contains a cluster of several genes with sequence similarity to the tomato Ve genes. We used genome sequencing and/or PCR screening along with pathogenicity assays of 152 accessions of lettuce to investigate allelic diversity and its relationship to race 1 resistance in lettuce. RESULTS: This approach identified a total of four Ve genes: LsVe1, LsVe2, LsVe3, and LsVe4. The majority of accessions, however, contained a combination of only three of these LsVe genes clustered on chromosomal linkage group 9 (within ~ 25 kb in the resistant cultivar La Brillante and within ~ 127 kb in the susceptible cultivar Salinas). CONCLUSIONS: A single allele, LsVe1L, was present in all resistant accessions and absent in all susceptible accessions. This allele can be used as a molecular marker for V. dahliae race 1 resistance in lettuce. A PCR assay for rapid detection of race 1 resistance in lettuce was designed based on nucleotide polymorphisms. Application of this assay allows identification of resistant genotypes in early stages of plant development or at seed-level without time- and labor-intensive testing in the field.


Asunto(s)
Resistencia a la Enfermedad , Lactuca/genética , Enfermedades de las Plantas/inmunología , Verticillium/fisiología , Alelos , California , Mapeo Cromosómico , Genotipo , Lactuca/inmunología , Enfermedades de las Plantas/microbiología
5.
Phytopathology ; 108(1): 31-43, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28876209

RESUMEN

Two naturally infested Verticillium wilt-conducive soils from the Salinas Valley of coastal California were amended with disease-suppressive broccoli residue or crab meal amendments, and changes to the soil prokaryote community were monitored using Illumina sequencing of a 16S ribosomal RNA gene library generated from 160 bulk soil samples. The experiment was run in a greenhouse, twice, with eggplant as the Verticillium wilt-susceptible host. Disease suppression, plant height, soil microsclerotia density, and soil chitinase activity were assessed at the conclusion of each experiment. In soil with high microsclerotia density, all amendments significantly reduced Verticillium wilt severity and microsclerotia density, and increased soil chitinase activity. Plant height was increased only in the broccoli-containing treatments. In total, 8,790 error-corrected sequence variants representing 1,917,893 different sequences were included in the analyses. The treatments had a significant impact on the soil microbiome community structure but measures of α diversity did not vary between treatments. Community structure correlated with disease score, plant height, microsclerotia density, and soil chitinase activity, suggesting that the prokaryote community may affect the disease-related response variables or vice versa. Similarly, the abundance of 107 sequence variants correlated with disease-related response variables, which included variants from genera with known antagonists of filamentous fungal plant pathogens, such as Pseudomonas and Streptomyces. Overall, genera with antifungal antagonists were more abundant in amended soils than unamended soils, and constituted up to 8.9% of all sequences in broccoli+crabmeal-amended soil. This study demonstrates that substrate-mediated shifts in soil prokaryote communities are associated with the transition of Verticillium wilt-conducive soils to Verticillium wilt-suppressive soils, and suggests that soils likely harbor numerous additional antagonists of fungal plant pathogens that contribute to the biological suppression of plant disease.


Asunto(s)
Brassica/microbiología , Microbiota/fisiología , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Solanum melongena/microbiología , Verticillium/patogenicidad , Agentes de Control Biológico , Quitina , Control Biológico de Vectores , Enfermedades de las Plantas/prevención & control , Verticillium/genética , Verticillium/crecimiento & desarrollo
6.
Environ Microbiol ; 17(8): 2824-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25630463

RESUMEN

The spread of aggressive fungal pathogens into previously non-endemic regions is a major threat to plant health and food security. Analyses of the spatial and genetic structure of plant pathogens offer valuable insights into their origin, dispersal mechanisms and evolution, and have been useful to develop successful disease management strategies. Here, we elucidated the genetic diversity, population structure and demographic history of worldwide invasion of the ascomycete Verticillium dahliae, a soil-borne pathogen, using a global collection of 1100 isolates from multiple plant hosts and countries. Seven well-differentiated genetic clusters were revealed through discriminant analysis of principal components (DAPC), but no strong associations between these clusters and host/geographic origin of isolates were found. Analyses of clonal evolutionary relationships among multilocus genotypes with the eBURST algorithm and analyses of genetic distances revealed that genetic clusters represented several ancient evolutionary lineages with broad geographic distribution and wide host range. Comparison of different scenarios of demographic history using approximate Bayesian computations revealed the branching order among the different genetic clusters and lineages. The different lineages may represent incipient species, and this raises questions with respect to their evolutionary origin and the factors allowing their maintenance in the same areas and same hosts without evidence of admixture between them. Based on the above findings and the biology of V. dahliae, we conclude that anthropogenic movement has played an important role in spreading V. dahliae lineages. Our findings have implications for the development of management strategies such as quarantine measures and crop resistance breeding.


Asunto(s)
Variación Genética/genética , Especies Introducidas , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Verticillium/clasificación , Verticillium/genética , Teorema de Bayes , Evolución Molecular , Genotipo , Especificidad del Huésped/genética , Verticillium/aislamiento & purificación
7.
Appl Environ Microbiol ; 81(17): 5671-4, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092453

RESUMEN

The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.


Asunto(s)
Bacterias/genética , Bases de Datos Factuales/legislación & jurisprudencia , Genómica/organización & administración , Microbiología/organización & administración , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estados Unidos
8.
Phytopathology ; 105(5): 662-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25585057

RESUMEN

Verticillium longisporum is an economically important vascular pathogen of Brassicaceae crops in different parts of the world. V. longisporum is a diploid hybrid that consists of three different lineages, each of which originated from a separate hybridization event between two different sets of parental species. We used 20 isolates representing the three V. longisporum lineages and the relative V. dahliae, and performed pathogenicity tests on 11 different hosts, including artichoke, cabbage, cauliflower, cotton, eggplant, horseradish, lettuce, linseed, oilseed rape (canola), tomato, and watermelon. V. longisporum was overall more virulent on the Brassicaceae crops than V. dahliae, which was more virulent than V. longisporum across the non-Brassicaceae crops. There were differences in virulence between the three V. longisporum lineages. V. longisporum lineage A1/D1 was the most virulent lineage on oilseed rape, and V. longisporum lineage A1/D2 was the most virulent lineage on cabbage and horseradish. We also found that on the non-Brassicaceae hosts eggplant, tomato, lettuce, and watermelon, V. longisporum was more or equally virulent than V. dahliae. This suggests that V. longisporum may have a wider potential host range than currently appreciated.


Asunto(s)
Brassicaceae/microbiología , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Verticillium/patogenicidad , Quimera , Diploidia , Verticillium/genética , Verticillium/fisiología , Virulencia
9.
Mycologia ; 107(6): 1304-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26354808

RESUMEN

This study investigates the diversity and taxonomy of Cryptosphaeria species occurring in the western United States on the basis of morphological characters and multilocus phylogenetic analyses of the ribosomal internal transcribed spacer region, parts of a ß-tubulin gene, the DNA-dependent RNA polymerase II second-largest subunit gene and the nuclear ribosomal large subunit gene. Cryptosphaeria multicontinentalis sp. nov is described from the Sierra Nevada and central coast of California on Populus tremuloides, P. balsamifera subsp. trichocarpa and P. fremontii. Cryptosphaeria pullmanensis is reported from a wide geographic area in the western United States on the main host, P. fremontii. The pathogen C. lignyota is reported for the first time from the Sierra Nevada of California on P. tremuloides. The phylogenetic analyses showed that C. multicontinentalis is a sister species to C. lignyota. Both species were closely related to C. subcutanea and more distantly related to C. pullmanensis. Characteristics of both teleomorph and anamorph of the newly introduced species C. multicontinentalis are described and illustrated.


Asunto(s)
Filogenia , Enfermedades de las Plantas/microbiología , Populus/microbiología , Xylariales/clasificación , Xylariales/aislamiento & purificación , California , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Nevada , Factor 1 de Elongación Peptídica/genética , ARN Polimerasa II/genética , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/aislamiento & purificación , Tubulina (Proteína)/genética , Xylariales/genética , Xylariales/crecimiento & desarrollo
10.
Fungal Genet Biol ; 62: 43-54, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24216224

RESUMEN

Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species.


Asunto(s)
Ascomicetos/genética , Beta vulgaris/microbiología , Genes del Tipo Sexual de los Hongos , Evolución Molecular , Exones , Reproducción
11.
Phytopathology ; 104(6): 564-74, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24548214

RESUMEN

Verticillium wilts are important vascular wilt diseases that affect many crops and ornamentals in different regions of the world. Verticillium wilts are caused by members of the ascomycete genus Verticillium, a small group of 10 species that are related to the agents of anthracnose caused by Colletotrichum species. Verticillium has a long and complicated taxonomic history with controversies about species boundaries and long overlooked cryptic species, which confused and limited our knowledge of the biology of individual species. We first review the taxonomic history of Verticillium, provide an update and explanation of the current system of classification and compile host range and geographic distribution data for individual species from internal transcribed spacer (ITS) GenBank records. Using Verticillium as an example, we show that species names are a poor vehicle for archiving and retrieving information, and that species identifications should always be backed up by DNA sequence data and DNA extracts that are made publicly available. If such a system were made a prerequisite for publication, all species identifications could be evaluated retroactively, and our knowledge of the biology of individual species would be immune from taxonomic changes, controversy and misidentification. Adoption of this system would improve quarantine practices and the management of diseases caused by various plant pathogens.


Asunto(s)
Enfermedades de las Plantas/microbiología , Verticillium , Evolución Biológica , Clasificación , Productos Agrícolas/microbiología , Geografía , Especificidad del Huésped , Filogenia , Verticillium/clasificación , Verticillium/genética
12.
PLoS Pathog ; 7(7): e1002137, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21829347

RESUMEN

The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.


Asunto(s)
Adaptación Fisiológica/genética , Genoma Fúngico/fisiología , Nicotiana/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Verticillium/genética , Verticillium/patogenicidad , Genómica , Nicotiana/genética
13.
Mol Plant Pathol ; 22(9): 1092-1108, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245085

RESUMEN

The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following V. dahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more O2- and less H2 O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of V. dahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in V. dahliae.


Asunto(s)
Gossypium/microbiología , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/genética , Verticillium , Verticillium/enzimología , Verticillium/patogenicidad , Virulencia , Zinc
14.
Microbiol Resour Announc ; 10(31): e0052821, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34351231

RESUMEN

We report the microbial 16S rRNA gene and internal transcribed spacer (ITS) sequencing data of maize and soybean plants and field soil from eight locations in Brazil. Enterobacter and Pseudomonas were among the most abundant genera. The data suggest the presence of several species that have not been documented for Brazil.

15.
Mol Plant Microbe Interact ; 23(4): 458-72, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20192833

RESUMEN

Southern Corn Leaf Blight, one of the worst plant disease epidemics in modern history, was caused by Cochliobolus heterostrophus race T, which produces T-toxin, a determinant of high virulence to maize carrying Texas male sterile cytoplasm. The genetics of T-toxin production is complex and the evolutionary origin of associated genes is uncertain. It is known that ability to produce T-toxin requires three genes encoded at two unlinked loci, Tox1A and Tox1B, which map to the breakpoints of a reciprocal translocation. DNA associated with Tox1A and Tox1B sums to about 1.2 Mb of A+T rich, repeated DNA that is not found in less virulent race O or other Cochliobolus species. Here, we describe identification and targeted deletion of six additional genes, three mapping to Tox1A and three to Tox1B. Mutant screens indicate that all six genes are involved in T-toxin production and high virulence to maize. The nine known Tox1 genes encode two polyketide synthases (PKS), one decarboxylase, five dehydrogenases, and one unknown protein. Only two have a similar phylogenetic profile. To trace evolutionary history of one of the core PKS, DNA from more than 100 Dothideomycete species were screened for homologs. An ortholog (60% identity) was confirmed in Didymella zeae-maydis, which produces PM-toxin, a polyketide of similar structure and biological specificity as T-toxin. Only one additional Dothideomycete species, the dung ascomycete Delitschia winteri harbored a paralog. The unresolved evolutionary history and distinctive gene signature of the PKS (fast-evolving, discontinuous taxonomic distribution) leaves open the question of lateral or vertical transmission.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micotoxinas/genética , Micotoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Ascomicetos/metabolismo , Mapeo Cromosómico , Cromosomas Fúngicos , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/fisiología , Filogenia , Virulencia
16.
Syst Biol ; 58(2): 224-39, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20525580

RESUMEN

We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.


Asunto(s)
Ascomicetos/genética , Filogenia , Ascomicetos/clasificación , Ascomicetos/citología , Ecosistema , Genes Fúngicos , Reproducción
17.
Mycologia ; 102(6): 1350-68, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20943551

RESUMEN

Botryosphaeriaceae are important pathogens on a variety of woody hosts, including almond, a major crop in California. Almond is susceptible to Botryosphaeria dothidea that forms band cankers on almond trunks, and the same fungus was also isolated from cankers of the canopy. To study the diversity and host range of B. dothidea and allied species from almond we used 132 isolates from 36 plant hosts from five continents, including 45 strains from almond in California. Species were identified by comparison to 13 ex-type strains with phylogenetic analyses based on six loci, including the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene repeat and portions of the coding genes elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase, heat shock protein, histone-3 and beta-tubulin. Seven species were found from almond: Botryosphaeria dothidea, Neofusicoccum parvum, Neof. mediterraneum, Neof. nonquaesitum, Diplodia seriata and Macrophomina phaseolina were identified from band cankers, and B. dothidea, Neof. mediterraneum, Neof. parvum and Dothiorella sarmentorum from canopy cankers. All were capable of inducing cankers on inoculated almond branches in the field. All species found on almond also occurred on other hosts, suggesting that infected vegetation adjacent to almond orchards could serve as source of inoculum of virulent almond strains. Of the 19 monophyletic groups obtained at the species level, 13 contained ex-type strains, five were morphologically similar to established species and one was morphologically distinct from its closest relatives, Neof. andinum and Neof. arbuti, as well as from the more than 190 described species of Fusicoccum and Neofusicoccum, and thus was described as the new species, Neof. nonquaesitum. Evidence for cryptic speciation was found in B. dothidea, Neof. ribis and Spencermartinsia viticola. Botryosphaeria dothidea and Neof. ribis comprised lineages that formed the morphologically distinct Dichomera anamorph not found in any other isolates recognized as B. dothidea and Neof. ribis. An S. viticola isolate from California was phylogenetically divergent and had conidia that differed morphologically from the type. Neofusicoccum parvum was diverse but lacked any morphological features correlating with molecular diversity. Phylogenetic analyses of combinations of datasets showed that pooled analyses of all six datasets resulted in the highest number of supported branches, suggesting that addition of more data might yet improve phylogenetic resolution.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Variación Genética , Filogenia , Prunus/microbiología , Ascomicetos/genética , Biodiversidad , California , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Proteínas Fúngicas/genética , Datos de Secuencia Molecular
18.
Phytobiomes J ; 4(2): 103-114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35265781

RESUMEN

Species names are fundamental to managing biological information. The surge of interest in microbial diversity has resulted in an increase in the number of microbes that need to be identified and assigned a species name. This article provides an introduction to the principles of DNA-based identification of Archaea and Bacteria traditionally known as prokaryotes, and Fungi, the Oomycetes and other protists, collectively referred to as fungi. The prokaryotes and fungi are the most commonly studied microbes from plants, and we introduce the most relevant concepts of prokaryote and fungal taxonomy and nomenclature. We first explain how prokaryote and fungal species are defined, delimited, and named, and then summarize the criteria and methods used to identify prokaryote and fungal organisms to species.

19.
Mycologia ; 101(3): 329-39, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19537206

RESUMEN

Stemphylium is a genus of plant pathogens and saprobes in the Pleosporaceae (Pleosporales, Dothideomycetes, Ascomycetes). The teleomorphs of Stemphylium, where known, are in Pleospora, with Pleospora herbarum as the type. The goal of this study was to present a rigorous phylogenetic analysis of the relationships among Stemphylium isolates with particular emphasis on species delimitation in the P. herbarum clade, on possible new species and on the relationship of clades to cultures from type specimens. Our taxon sampling comprised 110 Stemphylium strains collected worldwide from various hosts and DNA sequences from four loci, from the ITS, the protein encoding GPD and EF-1 alpha genes and the intergenic spacer between vmaA and vpsA. A large EF-1 alpha intron delimited by noncanonical splice sites and encoding putative proteins was present in three unrelated isolates and was excluded from analyses. Isolates comprised 23 representatives derived from type strains, compared to type strains or otherwise connected to type material, 40 unnamed strains morphologically similar to the type P. herbarum, four strains from an outbreak of Stemphylium leaf blight of cotton in Brazil and eight strains collected in British Columbia mainly from nonagricultural hosts. Our findings provided strong support for the main groupings of Stemphylium obtained earlier and also revealed six possible new species. Other variation within morphological species might point to additional cryptic species. On the other hand, even with four loci, cultures ex-type of five species including P. herbarum were inseparable. We speculate that being self-fertile the clade including P. herbarum might represent a group of highly inbred, morphologically distinct lineages that have yet to accumulate detectable species-specific sequence variation. The lack of variation in P. herbarum clade contrasts with many other a priori defined morphological species where multigene phylogenetic analyses revealed new cryptic species.


Asunto(s)
Ascomicetos/clasificación , Filogenia , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Brasil , Colombia Británica , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/aislamiento & purificación , Especiación Genética , Variación Genética , Gliceraldehído-3-Fosfato Deshidrogenasas/análisis , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Factor 1 de Elongación Peptídica/análisis , Factor 1 de Elongación Peptídica/genética , Plantas/microbiología , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
Microbiol Resour Announc ; 8(29)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320443

RESUMEN

Diverse strains of Luteibacter (Gammaproteobacteria) have been isolated from a variety of environments, most frequently in association with both plants and fungi. Motivated by the lack of genomic information for strains throughout the genus Luteibacter, we report here a complete genome sequence for Luteibacter pinisoli strain MAH-14.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA