Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 29(55): e202301232, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37435907

RESUMEN

Black phosphorene quantum dots (BPQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (Pred ) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to produce high quality BPQDs, by first ball-milling Pred to create nanocrystalline Pblack and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm BPQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy. This new method presents a scalable route to producing quantities of high quality BPQDs for academic and industrial applications.

2.
PLoS One ; 18(10): e0285691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796914

RESUMEN

Introducing SimpliPyTEM, a Python library and accompanying GUI that simplifies the post-acquisition evaluation of transmission electron microscopy (TEM) images, helping streamline the workflow. After an imaging session, a folder of image and/or video files, typically containing low contrast and large file size 32-bit images, can be quickly processed via SimpliPyTEM into high-quality, high-contrast.jpg images with suitably sized scale bars. The app can also generate HTML or PDF files containing the processed images for easy viewing and sharing. Additionally, SimpliPyTEM specifically focuses on in situ TEM videos, an emerging field of EM involving the study of dynamic processes whilst imaging. The package allows fast data processing into preview movies, averages, image series, or motion-corrected averages. The accompanying Python library offers many standard image processing methods, all simplified to a single command, plus a module to analyse particle morphology and population. This latter application is particularly useful for life sciences investigations. User-friendly tutorials and clear documentation are included to help guide users through the processing and analysis. We invite the EM community to contribute to and further develop this open-source package.


Asunto(s)
Aplicaciones Móviles , Programas Informáticos , Microscopía Electrónica de Transmisión , Procesamiento de Imagen Asistido por Computador/métodos
3.
Biochim Biophys Acta Bioenerg ; 1863(7): 148591, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839926

RESUMEN

In mitochondria, complex IV (CIV) can be found as a monomer, a dimer or in association with other respiratory complexes. The atomic structure of the yeast S. cerevisiae CIV in a supercomplex (SC) with complex III (CIII) pointed to a region of significant conformational changes compared to the homologous mammalian CIV structures. These changes involved the matrix side domain of Cox5A at the CIII-CIV interface, and it was suggested that it could be required for SC formation. To investigate this, we solved the structure of the isolated monomeric CIV from S. cerevisiae stabilised in amphipol A8-35 at 3.9 Å using cryo-electron microscopy. Only a minor change in flexibility was seen in this Cox5A region, ruling out large CIV conformational shift for interaction with CIII and confirming the different fold of the yeast Cox5A subunit compared to mammalian homologues. Other differences in structure were the absence of two canonical subunits, Cox12 and Cox13, as well as Cox26, which is unique to the yeast CIV. Their absence is most likely due to the protein purification protocol used to isolate CIV from the III-IV SC.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Microscopía por Crioelectrón/métodos , Complejo IV de Transporte de Electrones/metabolismo , Mamíferos/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA