Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Comput Biol ; 16(5): e1007809, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32379759

RESUMEN

Postdocs are a critical transition for early-career researchers. This transient period, between finishing a PhD and finding a permanent position, is when early-career researchers develop independent research programs and establish collaborative relationships that can make a successful career. Traditionally, postdocs physically relocate-sometimes multiple times-for these short-term appointments, which creates challenges that can disproportionately affect members of traditionally underrepresented groups in science, technology, engineering, and mathematics (STEM). However, many research activities involving analytical and quantitative work do not require a physical presence in a lab and can be accomplished remotely. Other fields have embraced remote work, yet many academics have been hesitant to hire remote postdocs. In this article, we present advice to both principal investigators (PIs) and postdocs for successfully navigating a remote position. Using the combined experience of the authors (as either remote postdocs or employers of remote postdocs), we provide a road map to overcome the real (and perceived) obstacles associated with remote work. With planning, communication, and creativity, remote postdocs can be a fully functioning and productive member of a research lab. Further, our rules can be useful for research labs generally and can help foster a more flexible and inclusive environment.


Asunto(s)
Educación a Distancia/métodos , Preceptoría/métodos , Investigadores/educación , Selección de Profesión , Educación a Distancia/tendencias , Ingeniería/educación , Humanos , Matemática/educación , Ciencia/educación , Tecnología/educación
2.
Nat Ecol Evol ; 7(11): 1844-1855, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749400

RESUMEN

The influence of depth and associated gradients in light, nutrients and plankton on the ecological organization of tropical reef communities was first described over six decades ago but remains untested across broad geographies. During this time humans have become the dominant driver of planetary change, requiring that we revisit historic ecological paradigms to ensure they capture the dynamics of contemporary ecological systems. Analysing >5,500 in-water reef fish surveys between 0 and 30 m depth on reef slopes of 35 islands across the Pacific, we assess whether a depth gradient consistently predicts variation in reef fish biomass. We reveal predictable ecological organization at unpopulated locations, with increased biomass of planktivores and piscivores and decreased primary consumer biomass with increasing depth. Bathymetric steepness also had a striking influence on biomass patterns, primarily for planktivores, emphasizing potential links between local hydrodynamics and the upslope propagation of pelagic subsidies to the shallows. However, signals of resource-driven change in fish biomass with depth were altered or lost for populated islands, probably due to depleted fish biomass baselines. While principles of depth zonation broadly held, our findings expose limitations of the paradigm for predicting ecological dynamics where human impacts confound connections between ecological communities and their surrounding environment.


Asunto(s)
Efectos Antropogénicos , Arrecifes de Coral , Animales , Humanos , Ecosistema , Biomasa , Peces
3.
Sci Rep ; 12(1): 10005, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864129

RESUMEN

In the face of an accelerating extinction crisis, scientists must draw insights from successful conservation interventions to uncover promising strategies for reversing broader declines. Here, we synthesize cases of recovery from a list of 362 species of large carnivores, ecologically important species that function as terminal consumers in many ecological contexts. Large carnivores represent critical conservation targets that have experienced historical declines as a result of direct exploitation and habitat loss. We examine taxonomic and geographic variation in current extinction risk and recovery indices, identify conservation actions associated with positive outcomes, and reveal anthropogenic threats linked to ongoing declines. We find that fewer than 10% of global large carnivore populations are increasing, and only 12 species (3.3%) have experienced genuine improvement in extinction risk, mostly limited to recoveries among marine mammals. Recovery is associated with species legislation enacted at national and international levels, and with management of direct exploitation. Conversely, ongoing declines are robustly linked to threats that include habitat modification and human conflict. Applying lessons from cases of large carnivore recovery will be crucial for restoring intact ecosystems and maintaining the services they provide to humans.


Asunto(s)
Carnívoros , Ecosistema , Animales , Conservación de los Recursos Naturales , Humanos , Densidad de Población
4.
Science ; 363(6425)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30679339

RESUMEN

Growing scientific awareness, strong regulations, and effective management have begun to fulfill the promise of recovery in the ocean. However, many efforts toward ocean recovery remain unsuccessful, in part because marine ecosystems and the human societies that depend upon them are constantly changing. Furthermore, recovery efforts are embedded in marine social-ecological systems where large-scale dynamics can inhibit recovery. We argue that the ways forward are to (i) rethink an inclusive definition of recovery that embraces a diversity of stakeholder perspectives about acceptable recovery goals and ecosystem outcomes; (ii) encourage research that enables anticipation of feasible recovery states and identifies pathways toward resilient ecosystems; and (iii) adopt policies that are sufficiently nimble to keep pace with rapid change and governance that works seamlessly from local to regional scales. Application of these principles can facilitate successful recoveries in a world where environmental conditions and social imperatives are constantly shifting.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Política Ambiental , Restauración y Remediación Ambiental , Océanos y Mares , Humanos
5.
PLoS One ; 10(8): e0135135, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308521

RESUMEN

While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.


Asunto(s)
Organismos Acuáticos/clasificación , Biodiversidad , Conservación de los Recursos Naturales , Geografía
6.
PLoS One ; 10(7): e0133301, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26200354

RESUMEN

With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other environmental perturbations, our work highlights the need for scientists and conservation managers to consider both spatial and temporal dynamics when designating biodiversity hotspots.


Asunto(s)
Organismos Acuáticos/fisiología , Biodiversidad , Peces/fisiología , Animales , Océano Pacífico , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA