Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(30): e2118262119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858453

RESUMEN

Human infections with methicillin-resistant Staphylococcus aureus (MRSA) are commonly treated with vancomycin, and strains with decreased susceptibility, designated as vancomycin-intermediate S. aureus (VISA), are associated with treatment failure. Here, we profiled the phenotypic, mutational, and transcriptional landscape of 10 VISA strains adapted by laboratory evolution from one common MRSA ancestor, the USA300 strain JE2. Using functional and independent component analysis, we found that: 1) despite the common genetic background and environmental conditions, the mutational landscape diverged between evolved strains and included mutations previously associated with vancomycin resistance (in vraT, graS, vraFG, walKR, and rpoBCD) as well as novel adaptive mutations (SAUSA300_RS04225, ssaA, pitAR, and sagB); 2) the first wave of mutations affected transcriptional regulators and the second affected genes involved in membrane biosynthesis; 3) expression profiles were predominantly strain-specific except for sceD and lukG, which were the only two genes significantly differentially expressed in all clones; 4) three independent virulence systems (φSa3, SaeR, and T7SS) featured as the most transcriptionally perturbed gene sets across clones; 5) there was a striking variation in oxacillin susceptibility across the evolved lineages (from a 10-fold increase to a 63-fold decrease) that also arose in clinical MRSA isolates exposed to vancomycin and correlated with susceptibility to teichoic acid inhibitors; and 6) constitutive expression of the VraR regulon explained cross-susceptibility, while mutations in walK were associated with cross-resistance. Our results show that adaptation to vancomycin involves a surprising breadth of mutational and transcriptional pathways that affect antibiotic susceptibility and possibly the clinical outcome of infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Staphylococcus aureus , Resistencia a la Vancomicina , Vancomicina , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Evolución Molecular , Humanos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Oxacilina/química , Oxacilina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Vancomicina/química , Vancomicina/farmacología , Vancomicina/uso terapéutico , Resistencia a la Vancomicina/genética , Virulencia/genética
2.
J Am Chem Soc ; 143(28): 10514-10518, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34228933

RESUMEN

Group behavior in many bacteria relies on chemically induced communication called quorum sensing (QS), which plays important roles in the regulation of colonization, biofilm formation, and virulence. In Gram-positive bacteria, QS is often mediated by cyclic ribosomally synthesized and posttranslationally modified peptides (RiPPs). In staphylococci, for example, most of these so-called autoinducing peptides (AIPs) contain a conserved thiolactone functionality, which has also been predicted to constitute a structural feature of AIPs from other genera. Here, we show that pentameric AIPs from Lactiplantibacillus plantarum, Clostridium perfringens, and Listeria monocytogenes that were previously presumed to be thiolactone-containing structures readily rearrange to become homodetic cyclopeptides. This finding has implications for the developing understanding of cross-species and potential cross-genus communication of bacteria and may help guide the discovery of peptide ligands to perturb their function.


Asunto(s)
Depsipéptidos/metabolismo , Bacterias Grampositivas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Depsipéptidos/química , Bacterias Grampositivas/química , Percepción de Quorum , Compuestos de Sulfhidrilo/química
3.
PLoS Pathog ; 15(7): e1007888, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31276485

RESUMEN

Temperate phages are bacterial viruses that as part of their life cycle reside in the bacterial genome as prophages. They are found in many species including most clinical strains of the human pathogens, Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Previously, temperate phages were considered as only bacterial predators, but mounting evidence point to both antagonistic and mutualistic interactions with for example some temperate phages contributing to virulence by encoding virulence factors. Here we show that generalized transduction, one type of bacterial DNA transfer by phages, can create conditions where not only the recipient host but also the transducing phage benefit. With antibiotic resistance as a model trait we used individual-based models and experimental approaches to show that antibiotic susceptible cells become resistant to both antibiotics and phage by i) integrating the generalized transducing temperate phages and ii) acquiring transducing phage particles carrying antibiotic resistance genes obtained from resistant cells in the environment. This is not observed for non-generalized transducing temperate phages, which are unable to package bacterial DNA, nor for generalized transducing virulent phages that do not form lysogens. Once established, the lysogenic host and the prophage benefit from the existence of transducing particles that can shuffle bacterial genes between lysogens and for example disseminate resistance to antibiotics, a trait not encoded by the phage. This facilitates bacterial survival and leads to phage population growth. We propose that generalized transduction can function as a mutualistic trait where temperate phages cooperate with their hosts to survive in rapidly-changing environments. This implies that generalized transduction is not just an error in DNA packaging but is selected for by phages to ensure their survival.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/patogenicidad , Transducción Genética , Bacteriófagos/fisiología , Simulación por Computador , Empaquetamiento del ADN/genética , Farmacorresistencia Bacteriana/genética , Evolución Molecular , Humanos , Lisogenia/genética , Modelos Biológicos , Profagos/genética , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/virología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Virulencia/genética
4.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070683

RESUMEN

Infections with enterococci are challenging to treat due to intrinsic resistance to several antibiotics. Especially vancomycin-resistant Enterococcus faecium and Enterococcus faecalis are of considerable concern with a limited number of efficacious therapeutics available. From an initial screening of 20 peptidomimetics, 11 stable peptide/ß-peptoid hybrids were found to have antibacterial activity against eight E. faecium and E. faecalis isolates. Microbiological characterization comprised determination of minimal inhibitory concentrations (MICs), probing of synergy with antibiotics in a checkerboard assay, time-kill studies, as well as assessment of membrane integrity. E. faecium isolates proved more susceptible than E. faecalis isolates, and no differences in susceptibility between the vancomycin-resistant (VRE) and -susceptible E. faecium isolates were observed. A test of three peptidomimetics (Ac-[hArg-ßNsce]6-NH2, Ac-[hArg-ßNsce-Lys-ßNspe]3-NH2 and Oct-[Lys-ßNspe]6-NH2) in combination with conventional antibiotics (vancomycin, gentamicin, ciprofloxacin, linezolid, rifampicin or azithromycin) revealed no synergy. The same three potent analogues were found to have a bactericidal effect with a membrane-disruptive mode of action. Peptidomimetics Ac-[hArg-ßNsce-Lys-ßNspe]3-NH2 and Oct-[Lys-ßNspe]6-NH2 with low MIC values (in the ranges 2-8 µg/mL and 4-16 µg/mL against E. faecium and E. faecalis, respectively) and displaying weak cytotoxic properties (i.e., <10% hemolysis at a ~100-fold higher concentration than their MICs; IC50 values of 73 and 41 µg/mL, respectively, against HepG2 cells) were identified as promising starting points for further optimization studies.


Asunto(s)
Antibacterianos , Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecium/crecimiento & desarrollo , Peptoides , Resistencia a la Vancomicina/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/crecimiento & desarrollo , Antibacterianos/química , Antibacterianos/farmacología , Peptoides/química , Peptoides/farmacología
5.
Mol Microbiol ; 112(4): 1116-1130, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31290194

RESUMEN

Inhibition of cell division is critical for viability under DNA-damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS-induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C-terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild-type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C-terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.


Asunto(s)
División Celular/genética , División Celular/fisiología , Respuesta SOS en Genética/fisiología , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Proteínas de la Membrana/metabolismo , Respuesta SOS en Genética/genética , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
6.
Microbiology (Reading) ; 166(9): 849-853, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32697188

RESUMEN

Campylobacter jejuni is a major bacterial foodborne-pathogen. Ciprofloxacin is an important antibiotic for the treatment of C. jejuni, albeit high rates of fluoroquinolone resistance have limited its usefulness. Persister-cells are transiently antibiotic-tolerant fractions of bacterial populations and their occurrence has been associated with recalcitrant and persistent bacterial infections. Here, time-kill assays with ciprofloxacin (200×MIC, 25 µg ml-1) were performed in C. jejuni strains 81-176 and RM1221 and persister-cells were found. The frequency of survivors after 8 h of ciprofloxacin exposure was approx. 10-3 for both strains, while after 22 h the frequency was between 10-5-10-7, depending on the strain and growth-phase. Interestingly, the stationary-phase cultures did not display more persister-cells compared to exponential-phase cultures, in contrast to what has been observed in other bacterial species. Persister-cells after ampicillin exposure (100×MIC, 200 µg ml-1) were not detected, implying that persister-cell formation in C. jejuni is antibiotic-specific. In attempts to identify the mechanism of ciprofloxacin persister-cell formation, stringent or SOS responses were not found to play major roles. Overall, this study reports ciprofloxacin persister-cells in C. jejuni and challenges the notion of persister-cells as plainly dormant non-growing cells.


Asunto(s)
Antibacterianos/farmacología , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/fisiología , Ciprofloxacina/farmacología , Ampicilina/farmacología , Carga Bacteriana/efectos de los fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/crecimiento & desarrollo , Daño del ADN , Farmacorresistencia Bacteriana , Tolerancia a Medicamentos , Pruebas de Sensibilidad Microbiana , Respuesta SOS en Genética
7.
Microbiology (Reading) ; 166(7): 654-658, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32427093

RESUMEN

Bacterial persisters form a subpopulation of cells that survive lethal concentrations of antibiotics without being genetically different from the susceptible population. They are generally considered to be phenotypic variants that spontaneously have entered a dormant state with low ATP levels or reduced membrane potential. In Staphylococcus aureus, a serious opportunistic human pathogen, persisters are believed to contribute to chronic infections that are a major global healthcare problem. While S. aureus persisters have mostly been studied in laboratory strains, we have here investigated the ability of clinical strains to form persisters. For 44 clinical strains belonging to the major clonal complexes CC5, CC8, CC30 or CC45, we examined persister cell formation in stationary phase when exposed to 100 times the MIC of ciprofloxacin, an antibiotic that targets DNA replication. We find that while all strains are able to form persisters, those belonging to CC30 displayed on average 100-fold higher persister cell frequencies when compared to strains of other CCs. Importantly, there was no correlation between persister formation and the cellular ATP content of the individual strains, but the group of CC30 strains displayed slightly lower membrane potential compared to the non-CC30 group. CC30 strains have previously been associated with chronic and reoccuring infections and we hypothesize that there could be a correlation between lineage-specific characteristics displayed via in vitro persister assays and the observed clinical spectrum of disease.


Asunto(s)
Antibacterianos/farmacología , Viabilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Adaptación Fisiológica , Fenómenos Fisiológicos Bacterianos , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Infecciones Estafilocócicas/microbiología , Factores de Tiempo
8.
Curr Genet ; 66(3): 495-499, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31925496

RESUMEN

In all living organisms, genome replication and cell division must be coordinated to produce viable offspring. In the event of DNA damage, bacterial cells employ the SOS response to simultaneously express damage repair systems and halt cell division. Extensive characterization of SOS-controlled cell division inhibition in Escherichia coli has laid the ground for a long-standing paradigm where the cytosolic SulA protein inhibits polymerization of the central division protein, FtsZ, and thereby prevents recruitment of the division machinery at the future division site. Within the last decade, it has become clear that another, likely more general, paradigm exists, at least within the broad group of Gram-positive bacterial species, namely membrane-localized, SOS-induced cell division inhibition. We recently identified such an inhibitor in Staphylococci, SosA, and established a model for SosA-mediated cell division inhibition in Staphylococcus aureus in response to DNA damage. SosA arrests cell division subsequent to the septal localization of FtsZ and later membrane-bound division proteins, while preventing progression to septum closure, leading to synchronization of cells at this particular stage. A membrane-associated protease, CtpA negatively regulates SosA activity and likely allows growth to resume once conditions are favorable. Here, we provide a brief summary of our findings in the context of what already is known for other membrane cell division inhibitors and we emphasize how poorly characterized these intriguing processes are mechanistically. Furthermore, we put some perspective on the relevance of our findings and future developments within the field.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Respuesta SOS en Genética , Proteínas Son Of Sevenless/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus/crecimiento & desarrollo , Proteínas Bacterianas/genética , División Celular , Proteínas Son Of Sevenless/genética , Staphylococcus/genética , Staphylococcus/metabolismo
9.
J Biol Chem ; 293(9): 3254-3264, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29326162

RESUMEN

The stringent response is a global reprogramming of bacterial physiology that renders cells more tolerant to antibiotics and induces virulence gene expression in pathogens in response to stress. This process is driven by accumulation of the intracellular alarmone guanosine-5'-di(tri)phosphate-3'-diphosphate ((p)ppGpp), which is produced by enzymes of the RelA SpoT homologue (RSH) family. The Gram-positive Firmicute pathogen, Staphylococcus aureus, encodes three RSH enzymes: a multidomain RSH (Rel) that senses amino acid starvation on the ribosome and two small alarmone synthetase (SAS) enzymes, RelQ (SAS1) and RelP (SAS2). In Bacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single-stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures of S. aureus RelP in two major functional states, pre-catalytic (bound to GTP and the non-hydrolyzable ATP analogue, adenosine 5'-(α,ß-methylene)triphosphate (AMP-CPP)), and post-catalytic (bound to pppGpp). We observed that RelP also forms a tetramer, but unlike RelQ (SAS1), it is strongly inhibited by both pppGpp and ppGpp and is insensitive to inhibition by RNA. We also identified putative metal ion-binding sites at the subunit interfaces that were consistent with the observed activation of the enzyme by Zn2+ ions. The structures reported here reveal the details of the catalytic mechanism of SAS enzymes and provide a molecular basis for understanding differential regulation of SAS enzymes in Firmicute bacteria.


Asunto(s)
Ligasas/química , Ligasas/metabolismo , Pirofosfatasas/biosíntesis , Staphylococcus aureus/enzimología , Regulación Alostérica , Dominio Catalítico , Cristalografía por Rayos X , Hierro/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Zinc/metabolismo
10.
J Infect Dis ; 218(6): 1009-1013, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29733353

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease where more than 90% of patients affected are colonized with Staphylococcus aureus. In AD, S. aureus δ-toxin is a major virulence factor causing cutaneous inflammation via mast cell degranulation. δ-toxin is controlled by the S. aureus agr quorum sensing system, and thus we addressed whether interference with agr signaling would limit skin inflammation. Indeed, treatment of S. aureus with the agr-inhibitor solonamide B (SolB) abolished δ-toxin production and reduced skin inflammation in a mouse model of inflammatory skin disease, demonstrating the potential of antivirulence therapy in treating S. aureus-induced skin disorders.


Asunto(s)
Proteínas Bacterianas/metabolismo , Depsipéptidos/administración & dosificación , Dermatitis Atópica/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/patogenicidad , Transactivadores/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular , Depsipéptidos/farmacología , Dermatitis Atópica/microbiología , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas Hemolisinas/genética , Humanos , Ratones , Mutación , Transducción de Señal , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Resultado del Tratamiento , Virulencia/efectos de los fármacos
11.
J Dairy Sci ; 101(8): 7322-7333, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29778469

RESUMEN

The role of non-aureus staphylococci (NAS) in the risk of acquisition of intramammary infections with Staphylococcus aureus is vague and still under debate. The objectives of this study were to (1) investigate the distribution patterns of NAS species from milk and teat skin in dairy herds with automatic milking systems, and (2) examine if the isolated NAS influences the expression of S. aureus virulence factors controlled by the accessory gene regulator (agr) quorum sensing system. In 8 herds, 14 to 20 cows with elevated somatic cell count were randomly selected for teat skin swabbing and aseptic quarter foremilk samples from right hind and left front quarters. Teat skin swabs were collected using the modified wet-dry method and milk samples were taken aseptically for bacterial culture. Colonies from quarters with suspicion of having NAS in milk or teat skin samples (or both) were subjected to MALDI-TOF assay for species identification. To investigate the interaction between S. aureus and NAS, 81 isolates NAS were subjected to a qualitative ß-galactosidase reporter plate assay. In total, 373 NAS isolates were identified representing 105 from milk and 268 from teat skin of 284 quarters (= 142 cows). Sixteen different NAS species were identified, 15 species from teat skin and 10 species from milk. The most prevalent NAS species identified from milk were Staphylococcus epidermidis (50%), Staphylococcus haemolyticus (15%), and Staphylococcus chromogenes (11%), accounting for 76%. Meanwhile, the most prevalent NAS species from teat skin were Staphylococcus equorum (43%), S. haemolyticus (16%), and Staphylococcus cohnii (14%), accounting for 73%. Using reporter gene fusions monitoring transcriptional activity of key virulence factors and regulators, we found that out of 81 supernatants of NAS isolates, 77% reduced expression of hla, encoding a-hemolysin, 70% reduced expression of RNAIII, the key effector molecule of agr, and 61% reduced expression of spa encoding protein A of S. aureus, respectively. Our NAS isolates showed 3 main patterns: (1) downregulation effect such as S. chromogenes (milk) and Staphylococcus xylosus (milk and teat), (2) no effect such as Staphylococcus sciuri (teat) and S. vitulinus (teat), and the third pattern (c) variable effect such as S. epidermidis (milk and teat) and S. equorum (milk and teat). The pattern of cross-talk between NAS species and S. aureus virulence genes varied according to the involved NAS species, habitat type, and herd factors. The knowledge of how NAS influences S. aureus virulence factor expression could explain the varying protective effect of NAS on S. aureus intramammary infections.


Asunto(s)
Glándulas Mamarias Animales/microbiología , Mastitis Bovina/microbiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus/aislamiento & purificación , Animales , Bovinos , Femenino , Leche , Infecciones Estafilocócicas/microbiología , Staphylococcus/patogenicidad , Staphylococcus aureus
12.
J Antimicrob Chemother ; 72(1): 115-127, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27650186

RESUMEN

BACKGROUND: The clinical development of antimicrobial peptides (AMPs) is currently under evaluation to combat the rapid increase in MDR bacterial pathogens. However, many AMPs closely resemble components of the human innate immune system and the ramifications of prolonged bacterial exposure to AMPs are not fully understood. OBJECTIVES: We show that in vitro serial passage of a clinical USA300 MRSA strain in a host-mimicking environment containing host-derived AMPs results in the selection of stable AMP resistance. METHODS: Serial passage experiments were conducted using steadily increasing concentrations of LL-37, PR-39 or wheat germ histones. WGS and proteomic analysis by MS were used to identify the molecular mechanism associated with increased tolerance of AMPs. AMP-resistant mutants were characterized by measuring in vitro fitness, AMP and antibiotic susceptibility, and virulence in a mouse model of sepsis. RESULTS: AMP-resistant Staphylococcus aureus mutants often displayed little to no fitness cost and caused invasive disease in mice. Further, this phenotype coincided with diminished susceptibility to both clinically prescribed antibiotics and human defence peptides. CONCLUSIONS: These findings suggest that therapeutic use of AMPs could select for virulent mutants with cross-resistance to human innate immunity as well as antibiotic therapy. Thus, therapeutic use of AMPs and the implications of cross-resistance need to be carefully monitored and evaluated.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana , Tolerancia a Medicamentos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Selección Genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones Endogámicos BALB C , Sepsis/microbiología , Sepsis/patología , Pase Seriado , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Virulencia
13.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28887418

RESUMEN

The chitinolytic system of Listeria monocytogenes thus far comprises two chitinases, ChiA and ChiB, and a lytic polysaccharide monooxygenase, Lmo2467. The role of the system in the bacterium appears to be pleiotropic, as besides mediating the hydrolysis of chitin, the second most ubiquitous carbohydrate in nature, the chitinases have been deemed important for the colonization of unicellular molds, as well as mammalian hosts. To identify additional components of the chitinolytic system, we screened a transposon mutant library for mutants exhibiting impaired chitin hydrolysis. The screening yielded a mutant with a transposon insertion in a locus corresponding to lmo0327 of the EGD-e strain. lmo0327 encodes a large (1,349 amino acids [aa]) cell wall-associated protein that has been proposed to possess murein hydrolase activity. The single inactivation of lmo0327, as well as of lmo0325 that codes for a putative transcriptional regulator functionally related to lmo0327, led to an almost complete abolishment of chitinolytic activity. The effect could be traced at the transcriptional level, as both chiA and chiB transcripts were dramatically decreased in the lmo0327 mutant. In accordance with that, we could barely detect ChiA and ChiB in the culture supernatants of the mutant strain. Our results provide new information regarding the function of the lmo0325-lmo0327 locus in L. monocytogenes and link it to the expression of chitinolytic activity.IMPORTANCE Many bacteria from terrestrial and marine environments express chitinase activities enabling them to utilize chitin as the sole source of carbon and nitrogen. Interestingly, several bacterial chitinases may also be involved in host pathogenesis. For example, in the important foodborne pathogen Listeria monocytogenes, the chitinases ChiA and ChiB and the lytic polysaccharide monooxygenase Lmo2467 are implicated in chitin assimilation but also act as virulence factors during the infection of mammalian hosts. Therefore, it is important to identify their regulators and induction cues to understand how the different roles of the chitinolytic system are controlled and mediated. Here, we provide evidence for the importance of lmo0327 and lmo0325, encoding a putative internalin/autolysin and a putative transcriptional activator, respectively, in the efficient expression of chitinase activity in L. monocytogenes and thereby provide new information regarding the function of the lmo0325-lmo0327 locus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quitinasas/genética , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/enzimología , Proteínas Bacterianas/genética , Quitina/metabolismo , Quitinasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Mutagénesis Insercional
14.
J Bacteriol ; 198(19): 2719-31, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27432833

RESUMEN

UNLABELLED: Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found to be sufficient to bypass the requirement for spx The generation of rifampin resistance libraries led to the discovery of an additional rpoB mutation, R484H, which supported strains with the spx disruption. Other rifampin resistance mutations either failed to support the Δspx mutant or were recovered at unexpectedly low frequencies in genetic transduction experiments. The amino acid residues encoded by rpoB-P519L and -R484H map in close spatial proximity and comprise a highly conserved region of RpoB. We also discovered that multicopy expression of either trxA (encoding thioredoxin) or trxB (encoding thioredoxin reductase) supports strains with the deletion of spx Our results reveal intriguing properties, especially of RNA polymerase, that compensate for the loss of an essential gene that is a key mediator of diverse processes in S. aureus, including redox and thiol homeostasis, antibiotic resistance, growth, and metabolism. IMPORTANCE: The survival and pathogenicity of S. aureus depend on complex genetic programs. An objective for combating this insidious organism entails dissecting genetic regulatory circuits and discovering promising new targets for therapeutic intervention. In this study, we discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Rifampin/farmacología , Staphylococcus aureus/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Alelos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Polimorfismo de Nucleótido Simple , Staphylococcus aureus/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas
15.
J Biol Chem ; 290(9): 5354-66, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25561735

RESUMEN

There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galß1-4GlcNAcß-tetramethylrhodamine (LacNAc-TMR (Galß1-4GlcNAcß(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcß1-4GlcNAcß-TMR), LacNAc-TMR, and LacNAcß1-6LacNAcß-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the ß1-6 bond in LacNAcß1-6LacNAcß-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quitinasas/metabolismo , Proteínas de Insectos/metabolismo , Lactosa/análogos & derivados , Salmonella typhimurium/enzimología , Amino Azúcares/química , Amino Azúcares/metabolismo , Animales , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Secuencia de Carbohidratos , Quitina/química , Quitina/metabolismo , Quitinasas/clasificación , Quitinasas/genética , Variación Genética , Humanos , Hidrólisis , Proteínas de Insectos/genética , Insectos , Cinética , Lactosa/química , Lactosa/metabolismo , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Rodaminas/química , Rodaminas/metabolismo , Salmonella typhimurium/genética , Especificidad por Sustrato , Vertebrados
16.
Appl Environ Microbiol ; 81(18): 6393-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150471

RESUMEN

Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals.


Asunto(s)
Catalasa/metabolismo , Ciprofloxacina/farmacología , Radicales Libres/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Vancomicina/farmacología , Catalasa/biosíntesis , Catalasa/genética , Medios de Cultivo , Óxidos N-Cíclicos , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Peróxido de Hidrógeno/metabolismo , Radical Hidroxilo/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Staphylococcus aureus/genética
17.
J Bacteriol ; 196(22): 3903-11, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182495

RESUMEN

Interactions among members of polymicrobial infections or between pathogens and the commensal flora may determine disease outcomes. Pseudomonas aeruginosa and Staphylococcus aureus are important opportunistic human pathogens and are both part of the polymicrobial infection communities in human hosts. In this study, we analyzed the in vitro interaction between S. aureus and a collection of P. aeruginosa isolates representing different evolutionary steps of a dominant lineage, DK2, that have evolved through decades of growth in chronically infected patients. While the early adapted P. aeruginosa DK2 strains outcompeted S. aureus during coculture on agar plates, we found that later P. aeruginosa DK2 strains showed a commensal-like interaction, where S. aureus was not inhibited by P. aeruginosa and the growth activity of P. aeruginosa was enhanced in the presence of S. aureus. This effect is mediated by one or more extracellular S. aureus proteins greater than 10 kDa, which also suppressed P. aeruginosa autolysis and prevented killing by clinically relevant antibiotics through promoting small-colony variant (SCV) formation. The commensal interaction was abolished with S. aureus strains mutated in the agr quorum sensing system or in the SarA transcriptional virulence regulator, as well as with strains lacking the proteolytic subunit, ClpP, of the Clp protease. Our results show that during evolution of a dominant cystic fibrosis lineage of P. aeruginosa, a commensal interaction potential with S. aureus has developed.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas , Ciprofloxacina/farmacología , Técnicas de Cocultivo , Regulación Bacteriana de la Expresión Génica/fisiología , Gentamicinas/farmacología , Especificidad del Huésped , Humanos , Pseudomonas aeruginosa/clasificación , Percepción de Quorum
18.
Int J Med Microbiol ; 304(2): 142-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24457183

RESUMEN

Intracellular proteolysis carried out by energy-dependent proteases is one of the most conserved biological processes. In all cells proteolysis maintains and shapes the cellular proteome by ridding the cell of damaged proteins and by regulating abundance of functional proteins such as regulatory proteins. The ATP-dependent ClpP protease is highly conserved among eubacteria and in the chloroplasts and mitochondria of eukaryotic cells. In the serious human pathogen, Staphylococcus aureus inactivation of clpP rendered the bacterium avirulent emphasizing the central role of proteolysis in virulence. The contribution of the Clp proteins to virulence is likely to occur at multiple levels. First of all, both Clp ATPases and the Clp protease are central players in stress responses required to cope with the adverse conditions met in the host. The ClpP protease has a dual role herein, as it both eliminates stress-damaged proteins as well as ensures the timely degradation of major stress regulators such as Spx, LexA and CtsR. Additionally, as we will summarize in this review, Clp proteases and Clp chaperones impact on such central processes as virulence gene expression, cell wall metabolism, survival in stationary phase, and cell division. These observations together with recent findings that Clp proteins contribute to adaptation to antibiotics highlights the importance of this interesting proteolytic machinery both for understanding pathogenicity of the organism and for treating staphylococcal infections.


Asunto(s)
Farmacorresistencia Bacteriana , Endopeptidasa Clp/metabolismo , Chaperonas Moleculares/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/fisiología , Estrés Fisiológico , Animales , Calmodulina , Humanos , Viabilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Virulencia
20.
Subcell Biochem ; 66: 161-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23479441

RESUMEN

Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.


Asunto(s)
Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis , Virulencia , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA