RESUMEN
In many human diseases, the presence of inflammation is associated with an increase in the level of reactive oxygen species (ROS). The resulting state of oxidative stress is highly detrimental and can initiate a cascade of events that ultimately lead to cell death. Thus, many therapeutic attempts have been focused on either modulating the immune system to lower inflammation or reducing the damaging caused by ROS. Berlin et al. reported the development of a novel nanoantioxidant known as poly(ethylene glycol)-functionalized-hydrophilic carbon clusters (PEG-HCCs). They showed that PEG-HCCs could be targeted to cancer cells, utilized as a drug delivery vector, and can even be visualized ex vivo. Our work here furthers this work and characterizes Gd-DTPA conjugated PEG-HCCs and explores the potential for in vivo tracking of T cells in live mice. We utilized a mouse model of delayed-type hypersensitivity (DTH) to assess the immunomodulatory effects of PEG-HCCs. The T1 -agent Gd-DTPA was then conjugated to the PEG-HCCs and T1 measurements, and T1 -weighted MRI of the modified PEG-HCCs was done to assess their relaxivity. We then assessed if PEG-HCCs could be visualized both ex vivo and in vivo within the mouse lymph node and spleen. Mice treated with PEG-HCCs showed significant improvements in the DTH assay as compared to the vehicle (saline)-treated control. Flow cytometry demonstrated that splenic T cells are capable of internalizing PEG-HCCs whereas fluorescent immunohistochemistry showed that PEG-HCCs are detectable within the cortex of lymph nodes. Finally, our nanoantioxidants can be visualized in vivo within the lymph nodes and spleen of a mouse after addition of the Gd-DTPA. PEG-HCCs are internalized by T cells in the spleen and can reduce inflammation by suppression of a recall immune response. PEG-HCCs can be modified to allow for both in vitro and in vivo visualization using MRI. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Asunto(s)
Antioxidantes/administración & dosificación , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Imagen por Resonancia Magnética/métodos , Nanopartículas/administración & dosificación , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Animales , Antioxidantes/química , Rastreo Celular/métodos , Células Cultivadas , Femenino , Gadolinio DTPA/química , Inmunidad Innata/efectos de los fármacos , Memoria Inmunológica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Nanoconjugados/administración & dosificación , Nanoconjugados/química , Nanopartículas/química , Especies Reactivas de Oxígeno/inmunología , Linfocitos T/citologíaRESUMEN
Neuronal network hyperexcitability underlies the pathogenesis of seizures and is a component of some degenerative neurological disorders such as Alzheimer's disease (AD). Recently, the microtubule-binding protein tau has been implicated in the regulation of network synchronization. Genetic removal of Mapt, the gene encoding tau, in AD models overexpressing amyloid-ß (Aß) decreases hyperexcitability and normalizes the excitation/inhibition imbalance. Whether this effect of tau removal is specific to Aß mouse models remains to be determined. Here, we examined tau as an excitability modifier in the non-AD nervous system using genetic deletion of tau in mouse and Drosophila models of hyperexcitability. Kcna1(-/-) mice lack Kv1.1-delayed rectifier currents and exhibit severe spontaneous seizures, early lethality, and megencephaly. Young Kcna1(-/-) mice retained wild-type levels of Aß, tau, and tau phospho-Thr(231). Decreasing tau in Kcna1(-/-) mice reduced hyperexcitability and alleviated seizure-related comorbidities. Tau reduction decreased Kcna1(-/-) video-EEG recorded seizure frequency and duration as well as normalized Kcna1(-/-) hippocampal network hyperexcitability in vitro. Additionally, tau reduction increased Kcna1(-/-) survival and prevented megencephaly and hippocampal hypertrophy, as determined by MRI. Bang-sensitive Drosophila mutants display paralysis and seizures in response to mechanical stimulation, providing a complementary excitability assay for epistatic interactions. We found that tau reduction significantly decreased seizure sensitivity in two independent bang-sensitive mutant models, kcc and eas. Our results indicate that tau plays a general role in regulating intrinsic neuronal network hyperexcitability independently of Aß overexpression and suggest that reducing tau function could be a viable target for therapeutic intervention in seizure disorders and antiepileptogenesis.
Asunto(s)
Epilepsia/metabolismo , Epilepsia/fisiopatología , Red Nerviosa/fisiopatología , Proteínas tau/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Drosophila , Electroencefalografía , Ensayo de Inmunoadsorción Enzimática , Epilepsia/genética , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-ClampRESUMEN
PURPOSE: Compared with photon cranial radiation therapy (X-CRT), proton cranial radiation therapy (P-CRT) offers potential advantages in limiting radiation-induced sequalae in the treatment of pediatric brain tumors. This study aims to identify cognitive, functional magnetic resonance and positron emission tomography imaging markers and molecular differences between the radiation modalities. METHODS AND MATERIALS: Juvenile rats received a single faction of 10 Gy (relative biological effectiveness-weighted dose) delivered with 6 MV X-CRT or at the midspread out Bragg peak of a 100 MeV P-CRT beam. At 3, 6, and 12 months post-CRT, executive function was measured using 5-choice serial reaction time task. At â¼12 months post-CRT, animals were imaged with 18F-Flurodeoxy-glucose positron emission tomography imaging followed by functional ex vivo magnetic resonance imaging and stained for markers of neuroinflammation. RESULTS: Irradiated animals had cognitive impairment with a higher number of omissions and lower incorrect and premature responses compared with sham (P ≤ .05). The accuracy of the animals' X-CRT was less than that of sham (P ≤ .001). No significant difference in rates of cognitive change were found between the radiation modalities. At 12 months post-CRT, glucose metabolism was significantly higher than sham in X-CRT (P = .04) but not P-CRT. Using diffusion tensor imaging, P-CRT brains were found to have higher white matter volume and fiber lengths compared with sham (P < .03). Only X-CRT animals had higher apparent diffusion coefficient values compared with sham (P = .04). P-CRT animals had more connectomic changes compared with X-CRT. Correlative analysis identified several imaging features with cognitive performance. Furthermore, microgliosis (P < .05), astrogliosis (P < .01), and myelin thinning (P <.05) were observed in both radiation modalities, with X-CRT showing slightly more inflammation. CONCLUSIONS: Both P-CRT and X-CRT lead to neurocognitive changes compared with sham. Although no significant difference was observed in neuroinflammation between the irradiated groups, differences were found in late-term glucose metabolism and brain connectome. Our results indicate that despite relative biological effectiveness weighting of the proton dose there are still differential effects which warrants further investigation.
Asunto(s)
Imagen de Difusión Tensora , Protones , Animales , Encéfalo/patología , Cognición/efectos de la radiación , Irradiación Craneana/efectos adversos , Imagen de Difusión Tensora/métodos , RatasRESUMEN
Manganese ion (Mn(2+)) is a calcium (Ca(2+)) analog that can enter neurons and other excitable cells through voltage gated Ca(2+) channels. Mn(2+) is also a paramagnetic that shortens the spin-lattice relaxation time constant (T(1)) of tissues where it has accumulated, resulting in positive contrast enhancement. Mn(2+) was first investigated as a magnetic resonance imaging (MRI) contrast agent approximately 20 years ago to assess the toxicity of the metal in rats. In the late 1990s, Alan Koretsky and colleagues pioneered the use of manganese enhanced MRI (MEMRI) towards studying brain activity, tract tracing and enhancing anatomical detail. This review will describe the methodologies and applications of MEMRI in the following areas: monitoring brain activity in animal models, in vivo neuronal tract tracing and using MEMRI to assess in vivo axonal transport rates.
Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Imagen por Resonancia Magnética , Manganeso , Factores de Edad , Animales , Transporte Axonal/efectos de los fármacos , Transporte Axonal/fisiología , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Medios de Contraste , Ácido Glutámico/farmacología , Humanos , Aumento de la Imagen , Imagenología Tridimensional , Neuronas/citología , Neuronas/fisiología , Distribución Normal , Radiografía , Ratas , Factores de TiempoRESUMEN
PURPOSE: Cranial radiation therapy (CRT) is a common treatment for pediatric brain tumor patients. However, side effects include significant neurobehavioral dysfunction in survivors. This dysfunction may in part be caused by inflammation, including increased production of tumor necrosis factor alpha (TNFα) and its receptor TNFR1, which can activate the nuclear factor kappa light-chain enhancer of activated B cells (NF-κB). The TNFα blockade abrogates this inflammatory response, although it presents immunologic risks. Thus, modulation of pathway subsets may be preferable. Here, we test whether inhibition of NF-κB activation using an NF-κB essential modulator binding domain (NBD) peptide mitigates CRT-induced neuroinflammation and improves behavioral outcomes. METHODS AND MATERIALS: Male C57BL/6J 28-day old mice were randomized to saline (sham), 5 Gy whole-brain CRT, or CRT + NBD-peptide. Brain tissue was collected after 4 hours or 3 months for Western blot or immunohistochemistry. The cortex, corpus callosum (CC), and dentate gyrus were variably imaged for NF-κB-p65, IκBα, proliferation, apoptosis, necroptosis, TNFα, TNFR1, IBA-1, doublecortin, CD11c, and GFAP. Neurobehavioral changes were assessed by open field and elevated plus maze tests 3 months post-CRT. RESULTS: NF-κB expression increased in whole and nuclear fractions 4 hours after CRT and was abrogated by NBD treatment. Cell death increased and proliferation decreased after CRT, including within neuronal progenitors, with some loss mitigated by NBD. Increased levels of TNFα, IBA-1, and GFAP were found in the CC and cortex months after CRT and were limited by NBD. The anti-NF-κB peptide also improved neurobehavioral assessments, yielding improvements in anxiety and exploration. CONCLUSIONS: Results suggest a role for NF-κB modulation by NBD peptide in the reduction of neuroinflammation and mitigation of behavioral complications after pediatric radiation therapy.
Asunto(s)
Conducta Animal/efectos de la radiación , Irradiación Craneana/efectos adversos , Encefalitis/prevención & control , Péptidos y Proteínas de Señalización Intracelular/farmacología , Factor de Transcripción ReIA/antagonistas & inhibidores , Factores de Edad , Animales , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Muerte Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Canales de Cloruro/metabolismo , Irradiación Craneana/métodos , Encefalitis/etiología , Encefalitis/metabolismo , Encefalitis/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/prevención & control , Proteína HMGB1/metabolismo , Etiquetado Corte-Fin in Situ , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Inhibidor NF-kappaB alfa , Dosis de Radiación , Distribución Aleatoria , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Although an effective treatment for pediatric brain tumors, cranial radiation therapy (CRT) damages surrounding healthy tissue, thereby disrupting brain development. Animal models of pediatric CRT have primarily relied on visual tasks to assess cognitive impairment. Moreover, there has been a lack of sex comparisons as most research on the cognitive effects of pediatric CRT does not include females. Therefore, we utilized olfaction, an ethologically relevant sensory modality, to assess cognitive impairment in an animal model of CRT that included both male and female mice. Specifically, we used the novel odor recognition (NOdorR) task with social odors to test recognition memory, a cognitive parameter that has been associated with olfactory neurogenesis, a form of cellular plasticity damaged by CRT. In addition to odor recognition memory, olfactory ability or discrimination of non-social and social odors were assessed both acutely and 3 months after CRT. Magnetic resonance imaging (MRI) and histology were performed after behavioral testing to assess long-term damage by CRT. Long-term but not acute radiation-induced impairment in odor recognition memory was observed, consistent with delayed onset of cognitive impairment in human patients. Males showed greater exploration of social odors than females, but general exploration was not affected by irradiation. However, irradiated males had impaired odor recognition memory in adulthood, compared to non-irradiated males (or simply male controls). Female olfactory recognition memory, in contrast, was dependent on estrus stage. CRT damage was demonstrated by (1) histological evaluation of olfactory neurogenesis, which suggested a reduction in CRT versus control, and (2) imaging analyses which showed that the majority of brain regions were reduced in volume by CRT. Specifically, two regions involved in social odor processing (amygdala and piriform cortex) were damaged by cranial irradiation in males but not females, paralleling olfactory recognition findings.
RESUMEN
Background: Acute radiation syndrome (ARS) affects morbidity and mortality dependent on the amount of body exposed. We propose the use of echocardiography (EC) to differentiate between survivors and non-survivors by measuring changes in cardiac function (CF) and pulmonary arterial function (PAF). We also investigate the role of rheology in our observed changes. Methods and Results: Rats were irradiated to the whole body (WB) or partial body with two-legs shielded (2LS) at a lethal dose of 7.5Gy. EC and magnetic resonance imaging were performed, and rheological measurements conducted. Only 2LS survived past 12-days post-exposure and their CF and PAR were not significantly different from baseline. WB was significantly different from both baseline and 2LS in stroke volume (P < 0.05), velocity time integral (VTI; P < 0.05) and pulmonary artery acceleration time (PAAT; P < 0.05). Differences were identified as early as six-days post-exposure, where VTI and PAAT were significantly (P < 0.05) decreased in WB versus baseline but only PAAT was different from 2LS. Blood viscosity was significantly lower in the WB versus baseline and 2LS (P < 0.0001). WB exhibited a significant rise in dense red blood cells versus baseline (P < 0.01) and 2LS (P < 0.01). Cell-free hemoglobin, a contributor to pulmonary artery hypertension and vasculopathy, was significantly elevated in WB vs. sham. Conclusions: Non-invasive and readily available imaging can be used to identify critically affected victims. Our findings point to heart failure as one possible cause of death in WB exposed animals, potentially exacerbated by rheological, hemolytic, and pulmonary factors, and the importance of developing radiomitigators against cardiac ARS mortality.
RESUMEN
Background: While cranial radiation therapy (CRT) is an effective treatment, healthy areas surrounding irradiation sites are negatively affected. Frontal lobe functions involving attention, processing speed, and inhibition control are impaired. These deficits appear months to years after CRT and impair quality of life. Exercise has been shown to rejuvenate the brain and aid in recovery post-injury through its effects on neurogenesis and cognition. Methods: We developed a juvenile rodent CRT model that reproduces neurocognitive deficits. Next, we utilized the model to test whether exercise ameliorates these deficits. Fischer rats (31 days old) were irradiated with a fractionated dose of 4 Gy × 5 days, trained and tested at 6, 9, and 12 months post-CRT using 5-choice serial reaction time task. After testing, fixed rat brains were imaged using diffusion tensor imaging and immunohistochemistry. Results: CRT caused early and lasting impairments in task acquisition, accuracy, and latency to correct response, as well as causing stunting of growth and changes in brain volume and diffusion. Exercising after irradiation improved acquisition, behavioral control, and processing speed, mitigated the stunting of brain size, and increased brain fiber numbers compared with sedentary CRT values. Further, exercise partially restored global connectome organization, including assortativity and characteristic path length, and while it did not improve the specific regional connections that were lowered by CRT, it appeared to remodel these connections by increasing connectivity between alternate regional pairs. Conclusions: Our data strongly suggest that exercise may be useful in combination with interventions aimed at improving cognitive outcome following pediatric CRT.
Asunto(s)
Encéfalo/patología , Trastornos del Conocimiento/prevención & control , Irradiación Craneana/efectos adversos , Modelos Animales de Enfermedad , Neurogénesis/efectos de la radiación , Condicionamiento Físico Animal/métodos , Animales , Animales Recién Nacidos , Encéfalo/efectos de la radiación , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Imagen de Difusión Tensora/métodos , Masculino , Ratas , Ratas Endogámicas F344RESUMEN
The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T2-weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.
Asunto(s)
Médula Ósea/diagnóstico por imagen , Médula Ósea/efectos de la radiación , Efecto Espectador/inmunología , Imagen Multimodal/métodos , Protección Radiológica/métodos , Animales , Médula Ósea/inmunología , Efecto Espectador/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Masculino , Ratones , Dosificación Radioterapéutica , Ratas , Ratas Sprague-DawleyRESUMEN
Autoimmune diseases mediated by a type of white blood cell-T lymphocytes-are currently treated using mainly broad-spectrum immunosuppressants that can lead to adverse side effects. Antioxidants represent an alternative approach for therapy of autoimmune disorders; however, dietary antioxidants are insufficient to play this role. Antioxidant carbon nanoparticles scavenge reactive oxygen species (ROS) with higher efficacy than dietary and endogenous antioxidants. Furthermore, the affinity of carbon nanoparticles for specific cell types represents an emerging tactic for cell-targeted therapy. Here, we report that nontoxic poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), known scavengers of the ROS superoxide (O2â¢-) and hydroxyl radical, are preferentially internalized by T lymphocytes over other splenic immune cells. We use this selectivity to inhibit T cell activation without affecting major functions of macrophages, antigen-presenting cells that are crucial for T cell activation. We also demonstrate the in vivo effectiveness of PEG-HCCs in reducing T lymphocyte-mediated inflammation in delayed-type hypersensitivity and in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Our results suggest the preferential targeting of PEG-HCCs to T lymphocytes as a novel approach for T lymphocyte immunomodulation in autoimmune diseases without affecting other immune cells.
RESUMEN
BACKGROUND: Accumulation and deposition of ß-amyloid peptides (Aß) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aß is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aß transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aß and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. RESULTS: Introduction of the Dutch mutation results in robust CAA and parenchymal Aß pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. CONCLUSIONS: Our study reveals a direct and positive link between vascular and parenchymal Aß; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aß pathology and behavioral deficits in the absence of APP overexpression.
Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/irrigación sanguínea , Angiopatía Amiloide Cerebral/patología , Circulación Cerebrovascular/fisiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Angiopatía Amiloide Cerebral/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , RatonesRESUMEN
Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of Alzheimer's disease. We and others have shown that over expression of the mitochondrial antioxidant superoxide dismutase 2 (SOD-2) can improve many of the pathologies in the Tg2576 mouse model of Alzheimer's disease that harbors the Swedish mutation in the amyloid precursor protein. However, it is not clear if these improvements are due to functional improvements or structural/anatomical changes. To answer this question, we used diffusion tensor imaging (DTI) to assess the structural integrity of white matter tracts in the control mice, Tg2576 mouse and Tg2576 mice over expressing SOD-2. We observed minimal differences in diffusion parameters with SOD-2 over expression in this model indicating that the improvements we previously reported are due to functional changes and not any alterations to the white matter tractography.
RESUMEN
BACKGROUND: While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs. We hypothesize that (i) hyperglycemia induces oxidative stress and is associated with reduced axonal transport rates in the ORNs and (ii) hyperglycemia-induced oxidative stress activates the p38 MAPK pathway in association with phosphorylation of tau protein leading to the axonal transport deficits. RESEARCH DESIGN AND METHODS: T(1)-weighted MEMRI imaging was used to determine axonal transport rates post-streptozotocin injection in wildtype (WT) and superoxide dismutase 2 (SOD2) overexpressing C57Bl/6 mice. SOD2 overexpression reduces mitochondrial superoxide load. Dihydroethidium staining was used to quantify the reactive oxygen species (ROS), specifically, superoxide (SO). Protein and gene expression levels were determined using western blotting and Q-PCR analysis, respectively. RESULTS: STZ-treated WT mice exhibited significantly reduced axonal transport rates and significantly higher levels of ROS, phosphorylated p38 MAPK and tau protein as compared to the WT vehicle treated controls and STZ-treated SOD2 mice. The gene expression levels of p38 MAPK and tau remained unchanged. CONCLUSION: Increased oxidative stress in STZ-treated WT hyperglycemic mice activates the p38 MAPK pathway in association with phosphorylation of tau and attenuates axonal transport rates in the olfactory system. In STZ-treated SOD-overexpressing hyperglycemic mice in which superoxide levels are reduced, these deficits are reversed.