Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genome Inform ; 21: 212-23, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19425160

RESUMEN

Circadian rhythms of the living organisms are 24hr oscillations found in behavior, biochemistry and physiology. Under constant conditions, the rhythms continue with their intrinsic period length, which are rarely exact 24hr. In this paper, we examine the effects of light on the phase of the gene expression rhythms derived from the interacting feedback network of a few clock genes, taking advantage of a computer simulation with Cell Illustrator. The simulation results suggested that the interacting circadian feedback network at the molecular level is essential for phase dependence of the light effects, observed in mammalian behavior. Furthermore, the simulation reproduced the biological observations that the range of entrainment to shorter or longer than 24hr light-dark cycles is limited, centering around 24hr. Application of our model to inter-time zone flight successfully demonstrated that 6 to 7 days are required to recover from jet lag when traveling from Tokyo to New York.


Asunto(s)
Ritmo Circadiano/genética , Oscuridad , Regulación de la Expresión Génica , Luz , Animales , Relojes Biológicos , Ritmo Circadiano/fisiología , Simulación por Computador , Humanos , Insectos/fisiología , Mamíferos/fisiología , Ratones , Fenómenos Fisiológicos de las Plantas , Proteínas/genética , ARN Mensajero/genética
2.
Curr Biol ; 13(8): 664-8, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12699623

RESUMEN

The mammalian master clock driving circadian rhythmicity in physiology and behavior resides within the suprachiasmatic nuclei (SCN) of the hypothalamus. SCN neurons contain a molecular oscillator composed of a set of clock genes that acts in intertwined negative and positive feedback loops [1]. In addition, all peripheral tissues analyzed thus far have been shown to contain circadian oscillators [2]. This raises the question of whether the central circadian pacemaker in the SCN is sufficient to evoke behavioral rhythms or whether peripheral circadian clockworks are also required. Mice with a mutated CLOCK protein (a transcriptional activator of E box-containing clock and clock output genes) or lacking both CRYPTOCHROMES, mCRY1 and mCRY2 proteins (inhibitors of E box-mediated transcription), lack circadian rhythmicity in behavior [3,4]. Here, we show that transplantation of mouse fetal SCN tissue into the hypothalamus restores free-running circadian behavioral rhythmicity in Clock mutant or mCry1/mCry2 double knockout mice. The periodicity of the emerged rhythms is determined by the genetic constitution (i.e., wild-type or mCry2 knockout) of the grafted SCN. Since transplanted mCry1/mCry2-deficient mice do not have functional circadian oscillators [5] other than those present in the grafted hypothalamus region, these findings suggest that the SCN can generate circadian behavioral rhythms in the absence of distant peripheral oscillators in the brain or elsewhere.


Asunto(s)
Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas de Drosophila , Proteínas del Ojo , Células Fotorreceptoras de Invertebrados , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/trasplante , Animales , Relojes Biológicos/fisiología , Proteínas CLOCK , Criptocromos , Flavoproteínas/genética , Hipotálamo/anatomía & histología , Inmunohistoquímica , Locomoción/fisiología , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G , Transactivadores/genética
3.
J Bioinform Comput Biol ; 4(1): 139-53, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16568547

RESUMEN

Knowledge of molecular biological systems is increasing at an amazing pace. It is becoming harder to intuitively evaluate the significance of each interaction between the molecules of the complex biological systems. Hence, we need to develop an efficient computational method to explore the biological mechanisms. In this study, we employed a hybrid functional Petri net in order to analyze mammalian circadian genetic control mechanisms, which consists of feedback loops of clock genes and generates endogenous near 24 h rhythms in mammals. We constructed a computational model based on the available biological data, and by using Genomic Object Net, we performed computer simulations of the time courses of clock gene transcription and translation. Although the original model successfully reproduced most of the circadian genetic control mechanisms, two discrepancies remained despite a wide selection of the parameters. We found that addition of a hypothetical path into the original model result in successful simulation of time courses and phase relationships among clock genes. This also demonstrates the usefulness of the hybrid functional Petri net approach to biological systems.


Asunto(s)
Ritmo Circadiano/genética , Simulación por Computador , Mamíferos/genética , Mamíferos/fisiología , Modelos Genéticos , Animales , Biología Computacional , Genómica/estadística & datos numéricos , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Brain Res ; 1098(1): 9-18, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16780815

RESUMEN

Most biological phenomena, including behavior and metabolic pathways, are governed by an internal clock system that is circadian (i.e., with a period of approximately 24 h) and is reset by light exposure from outside. In order to understand the molecular basis of the resetting mechanism of the clock, we attempted to isolate light-inducible transcripts in the suprachiasmatic nucleus, where the master clock resides, using a new gene expression profiling procedure. We identified 87 such transcripts, successfully cloned 60 of them and confirmed their light inducibility. Six of the 60 were already known to be light inducible and 17 are protein-coding transcripts registered in the public database that were not known to be light inducible. Induction is subjective night specific in most of the transcripts. Interestingly, 6 of the transcripts exhibit rhythmic expression in a circadian manner in the suprachiasmatic nucleus.


Asunto(s)
Ritmo Circadiano/genética , Núcleo Supraquiasmático/fisiología , Animales , Clonación Molecular , Regulación de la Expresión Génica , Hibridación in Situ , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , ARN/biosíntesis , ARN/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores Citoplasmáticos y Nucleares/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Núcleo Supraquiasmático/efectos de la radiación
5.
Brain Res Mol Brain Res ; 110(1): 1-6, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12573527

RESUMEN

We identified the Dexamethasone-induced RAS protein 1 (Dexras1) gene as a cycling gene in the suprachiasmatic nucleus (SCN). Investigation of the whole brain using in situ hybridization demonstrated the localization of the expression of the gene in the SCN, thalamus, piriform cortex and hippocampus. However, rhythmic expression of the gene was observed only in the SCN. The rhythmic change in gene expression during 1 day was approximately five-fold, and the maximum expression was observed during subjective night. Real-time PCR using the SCN, paraventricular nucleus and cortex confirmed these results. Next, we analyzed the expression of the Dexras1 gene in the SCN of cryptochrome (Cry) 1 and 2 double knockout mice. We found that the rhythmic expression disappeared. The results indicate that Dexras1 rhythmicity and levels are dependent upon CRYs. This is the first time that the G protein, which may be involved in the input pathway, has been isolated as a cycling gene in the SCN.


Asunto(s)
Ritmo Circadiano/genética , Proteínas de Drosophila , Proteínas del Ojo , Proteínas de Unión al GTP , Proteínas de Unión al GTP Monoméricas/genética , Células Fotorreceptoras de Invertebrados , Núcleo Supraquiasmático/fisiología , Proteínas ras , Animales , Criptocromos , Dexametasona , Flavoproteínas/genética , Regulación de la Expresión Génica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/metabolismo , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/análisis , Receptores Acoplados a Proteínas G
6.
Eur J Neurosci ; 26(10): 2731-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17973924

RESUMEN

The mammalian hypothalamic suprachiasmatic nucleus (SCN) is the master oscillator that regulates the circadian rhythms of the peripheral oscillators. Previous studies have demonstrated that the transplantation of embryonic SCN tissues into SCN-lesioned arrhythmic mice restores the behavioral circadian rhythms of these animals. In our present study, we examined the clock gene expression profiles in a transplanted SCN and peripheral tissues, and also analysed the circadian rhythm of the locomotor activity in SCN-grafted mice. These experiments were undertaken to elucidate whether the transplanted SCN generates a dynamic circadian oscillation and maintains the phase relationships that can be detected in intact mice. The grafted SCN indeed showed dynamic circadian expression rhythms of clock genes such as mPeriod1 (mPer1) and mPeriod2 (mPer2). Furthermore, the phase differences between the expression rhythms of these genes in the grafted SCN and the locomotor activity rhythms of the transplanted animals were found to be very similar to those in intact animals. Moreover, in the liver, kidney and skeletal muscles of the transplanted animals, the phase angles between the circadian rhythm of the grafted SCN and that of the peripheral tissues were maintained as in intact animals. However, in the SCN-grafted animals, the amplitudes of the mPer1 and mPer2 rhythms were attenuated in the peripheral tissues. Our current findings therefore indicate that a transplanted SCN has the capacity to generate a dynamic intrinsic circadian oscillation, and can also lock the normal phase angles among the SCN, locomotor activity and peripheral oscillators in a similar manner as in intact control animals.


Asunto(s)
Trasplante de Tejido Encefálico , Ritmo Circadiano/fisiología , Expresión Génica/fisiología , Proteínas Nucleares/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/trasplante , Animales , Conducta Animal , Embrión de Mamíferos , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Proteínas Nucleares/genética , Núcleo Supraquiasmático/lesiones , Núcleo Supraquiasmático/cirugía , Factores de Tiempo
7.
Eur J Neurosci ; 23(11): 2959-70, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16819985

RESUMEN

The suprachiasmatic nucleus (SCN) is the master circadian clock that regulates physiological and behavioral circadian rhythms in mammals. Prokineticin 2 (PK2) is highly expressed in the SCN, and its involvement in the generation of circadian locomotor activity has been reported previously. In the present study, using in situ hybridization methods, we investigated the localization of PK2 and prokineticin receptor 2 (PKR2), a specific receptor for PK2, in the rat SCN. In steady light : dark (L : D = 12 : 12 h) and constant dark conditions, rPK2 mRNA displayed a robust circadian oscillation with a peak occurring during the day. Moreover, during peak expression, the rPK2 mRNA-positive neurons were scattered in both the dorsomedial and ventrolateral SCN, which are two functionally and morphologically distinct subregions. Furthermore, double-labeling in situ hybridization experiments revealed that greater than 50% of the rPK2 mRNA-containing neurons co-expressed either vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP) or arginine vasopressin (AVP) in the SCN. In contrast, the rPKR2 mRNA levels did not show significant diurnal alterations. rPKR2 mRNA-containing neurons were also clustered in the dorsolateral part of the SCN, which shows negligible labeling of either rAVP, rVIP, rGRP or rPK2 transcripts. In addition, this region exhibited a delayed cycling of the rPer1 gene. These results suggest an intrinsic PK2 neurotransmission and functionally distinct roles for PKR2-expressing neurons in the SCN.


Asunto(s)
Hormonas Gastrointestinales/metabolismo , Receptores de Péptidos/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Ritmo Circadiano/fisiología , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/metabolismo , Hormonas Gastrointestinales/genética , Regulación de la Expresión Génica/fisiología , Hibridación in Situ/métodos , Masculino , Neuropéptidos/genética , Neuropéptidos/metabolismo , ARN Mensajero/metabolismo , Ratas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo
8.
Proc Natl Acad Sci U S A ; 103(10): 3716-21, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16537451

RESUMEN

Three mammalian Period (Per) genes, termed Per1, Per2, and Per3, have been identified as structural homologues of the Drosophila circadian clock gene, period (per). The three Per genes are rhythmically expressed in the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. The phases of peak mRNA levels for the three Per genes in the SCN are slightly different. Light sequentially induces the transcripts of Per1 and Per2 but not of Per3 in mice. These data and others suggest that each Per gene has a different but partially redundant function in mammals. To elucidate the function of Per1 in the circadian system in vivo, we generated two transgenic rat lines in which the mouse Per1 (mPer1) transcript was constitutively expressed under the control of either the human elongation factor-1alpha (EF-1alpha) or the rat neuron-specific enolase (NSE) promoter. The transgenic rats exhibited an approximately 0.6-1.0-h longer circadian period than their wild-type siblings in both activity and body temperature rhythms. Entrainment in response to light cycles was dramatically impaired in the transgenic rats. Molecular analysis revealed that the amplitudes of oscillation in the rat Per1 (rPer1) and rat Per2 (rPer2) mRNAs were significantly attenuated in the SCN and eyes of the transgenic rats. These results indicate that either the level of Per1, which is raised by overexpression, or its rhythmic expression, which is damped or abolished in over expressing animals, is critical for normal entrainment of behavior and molecular oscillation of other clock genes.


Asunto(s)
Ritmo Circadiano/genética , Proteínas Nucleares/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Conducta Animal/fisiología , Proteínas de Ciclo Celular , Ritmo Circadiano/fisiología , Ojo/metabolismo , Femenino , Expresión Génica , Masculino , Ratones , Proteínas Nucleares/fisiología , Proteínas Circadianas Period , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Núcleo Supraquiasmático/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiología
9.
Biochem Biophys Res Commun ; 306(3): 781-5, 2003 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12810087

RESUMEN

The induction of Per1 gene in the suprachiasmatic nucleus, the center of the circadian clock, is assumed to play significant roles in the adjustment of the internal clock. cAMP is one of the intracellular mediators which activates Per1 transcription. Here, we showed that the amount of the rat Per1 (rPer1) transcript induced by forskolin (FK) was significantly upregulated by the inhibition of phosphodiesterase type 4 (PDE4), a specific phosphodiesterase for cAMP, in rat-1 fibroblasts. Administration of rolipram, a specific inhibitor of PDE4, increased intracellular cAMP concentration, phosphorylation of cAMP response element binding protein (CREB) and enhanced rPer1 induction at their peaks. However, in the falling phase of rPer1 induction, the inhibition of PDE4 hardly affected the profile of rPer1 expression. These findings suggest the involvement of PDE4 for the regulation of rPer1 expression via cAMP metabolism at peak of the induction but little or no participation of PDE4 in the decreasing phase of the gene expression.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Proteínas Nucleares/genética , Transcripción Genética , Animales , Proteínas de Ciclo Celular , Células Cultivadas , Colforsina/metabolismo , Medio de Cultivo Libre de Suero , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Inhibidores de Fosfodiesterasa/metabolismo , Ratas , Rolipram/metabolismo
10.
J Biol Chem ; 279(11): 10237-42, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-14701801

RESUMEN

The regulatory factor X (RFX) family of transcription factors is characterized by a unique and highly conserved 76-amino acid residue DNA-binding domain. Mammals have five RFX genes, but the physiological functions of their products are unknown, with the exception of RFX5. Here a mouse RFX4 transcript was identified that encodes a peptide of 735 amino acids, including the DNA-binding domain. Its expression was localized in the suprachiasmatic nucleus, the central pacemaker site of the circadian clock. Also, light exposure was found to induce its gene expression in a subjective night-specific manner. Polyclonal antibodies were prepared, and an 80-kDa band was detected in the suprachiasmatic nucleus by Western hybridization. A histochemical study showed a localization of the products in the nucleus. This is the first report on mouse RFX4, which contains the RFX DNA-binding motif. Our investigation may provide clues to the physiological function of RFX4.


Asunto(s)
Hipotálamo/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Encéfalo/patología , Células COS , Ritmo Circadiano , ADN/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al ADN/química , Inmunohistoquímica , Hibridación in Situ , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA