Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(12): e2119616119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290124

RESUMEN

Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with ∼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young's double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.

2.
Opt Express ; 32(10): 18301-18316, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858990

RESUMEN

Single-shot imaging with femtosecond X-ray lasers is a powerful measurement technique that can achieve both high spatial and temporal resolution. However, its accuracy has been severely limited by the difficulty of applying conventional noise-reduction processing. This study uses deep learning to validate noise reduction techniques, with autoencoders serving as the learning model. Focusing on the diffraction patterns of nanoparticles, we simulated a large dataset treating the nanoparticles as composed of many independent atoms. Three neural network architectures are investigated: neural network, convolutional neural network and U-net, with U-net showing superior performance in noise reduction and subphoton reproduction. We also extended our models to apply to diffraction patterns of particle shapes different from those in the simulated data. We then applied the U-net model to a coherent diffractive imaging study, wherein a nanoparticle in a microfluidic device is exposed to a single X-ray free-electron laser pulse. After noise reduction, the reconstructed nanoparticle image improved significantly even though the nanoparticle shape was different from the training data, highlighting the importance of transfer learning.

3.
Opt Lett ; 48(19): 5041-5044, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773380

RESUMEN

Damage thresholds and structures on a metal aluminum and an aluminum oxide crystal induced by the soft x-ray free electron laser irradiations were evaluated. Distinctive differences in damage thresholds and structures were observed for these materials. On the aluminum oxide crystal surface, in particular, a novel, to the best of our knowledge, surface processing, which we suggest defining as "peeling," was recognized. Surface structures formed by peeling had extremely shallow patterning of sub-nanometer depth. For the newly observed peeling process, we proposed a scission of chemical bond, i.e., binding energy model, in the crystal.

4.
Phys Rev Lett ; 131(16): 163201, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925726

RESUMEN

X-ray diffraction of silicon irradiated with tightly focused femtosecond x-ray pulses (photon energy, 11.5 keV; pulse duration, 6 fs) was measured at various x-ray intensities up to 4.6×10^{19} W/cm^{2}. The measurement reveals that the diffraction intensity is highly suppressed when the x-ray intensity reaches of the order of 10^{19} W/cm^{2}. With a dedicated simulation, we confirm that the observed reduction of the diffraction intensity can be attributed to the femtosecond change in individual atomic scattering factors due to the ultrafast creation of highly ionized atoms through photoionization, Auger decay, and subsequent collisional ionization. We anticipate that this ultrafast reduction of atomic scattering factor will be a basis for new x-ray nonlinear techniques, such as pulse shortening and contrast variation x-ray scattering.

5.
J Synchrotron Radiat ; 29(Pt 3): 862-865, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511018

RESUMEN

A simple spectrometer using diffraction from diamond microcrystals has been developed to diagnose single-shot spectra of X-ray free-electron laser (XFEL) pulses. The large grain size and uniform lattice constant of the adopted crystals enable characterizing the XFEL spectrum at a resolution of a few eV from the peak shape of the powder diffraction profile. This single-shot spectrometer has been installed at beamline 3 of SACLA and is used for daily machine tuning.

6.
Phys Rev Lett ; 128(22): 223203, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35714226

RESUMEN

Transient structural changes of Al_{2}O_{3} on subatomic length scales following irradiation with an intense x-ray laser pulse (photon energy: 8.70 keV; pulse duration: 6 fs; fluence: 8×10^{2} J/cm^{2}) have been investigated by using an x-ray pump x-ray probe technique. The measurement reveals that aluminum and oxygen atoms remain in their original positions by ∼20 fs after the intensity maximum of the pump pulse, followed by directional atomic displacements at the fixed unit cell parameters. By comparing the experimental results and theoretical simulations, we interpret that electron excitation and relaxation triggered by the pump pulse modify the potential energy surface and drives the directional atomic displacements. Our results indicate that high-resolution x-ray structural analysis with the accuracy of 0.01 Å is feasible even with intense x-ray pulses by making the pulse duration shorter than the timescale needed to complete electron excitation and relaxation processes, which usually take up to a few tens of femtoseconds.

7.
J Synchrotron Radiat ; 28(Pt 1): 372, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399589

RESUMEN

Corrections to equations and experimental results in the paper by Inoue et al. [(2019). J. Synchrotron Rad. 26, 2050-2054] are made.

8.
Opt Express ; 29(21): 33121-33133, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809130

RESUMEN

Although laser irradiation with femtosecond pulses is known to generate crystallization and morphological changes, the contribution of optical parameters to material changes is still in discussion. Here, we compare two structures irradiated near Si-L2,3 edges by an extreme ultraviolet femtosecond pulse. Our result implies that, despite the femtosecond irradiation regime, these values of the optical attenuation length between the wavelengths of 10.3-nm and 13.5-nm differ by one order of magnitude. From the structural comparison, the original crystalline state was maintained upon irradiation at 13.5-nm, on the other hand, transition to an amorphous state occurred at 10.3-nm. The difference in optical attenuation length directly influence to the decision of material crystallization or morphological changes, even if the irradiation condition is under the femtosecond regime and same pulse duration. Our result reveals the contribution of optical attenuation length in ultrafast laser-induced structural change.

9.
Phys Rev Lett ; 127(16): 163903, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723578

RESUMEN

To shorten the duration of x-ray pulses, we present a nonlinear optical technique using atoms with core-hole vacancies (core-hole atoms) generated by inner-shell photoionization. The weak Coulomb screening in the core-hole atoms results in decreased absorption at photon energies immediately above the absorption edge. By employing this phenomenon, referred to as saturable absorption, we successfully reduce the duration of x-ray free-electron laser pulses (photon energy: 9.000 keV, duration: 6-7 fs, fluence: 2.0-3.5×10^{5} J/cm^{2}) by ∼35%. This finding that core-hole atoms are applicable to nonlinear x-ray optics is an essential stepping stone for extending nonlinear technologies commonplace at optical wavelengths to the hard x-ray region.

10.
Phys Rev Lett ; 126(11): 117403, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798368

RESUMEN

Ultrafast changes of charge density distribution in diamond after irradiation with an intense x-ray pulse (photon energy, 7.8 keV; pulse duration, 6 fs; intensity, 3×10^{19} W/cm^{2}) have been visualized with the x-ray pump-x-ray probe technique. The measurement reveals that covalent bonds in diamond are broken and the electron distribution around each atom becomes almost isotropic within ∼5 fs after the intensity maximum of the x-ray pump pulse. The 15 fs time delay observed between the bond breaking and atomic disordering indicates nonisothermality of electron and lattice subsystems on this timescale. From these observations and simulation results, we interpret that the x-ray-induced change of the interatomic potential drives the ultrafast atomic disordering underway to the following nonthermal melting.

11.
Nature ; 524(7566): 446-9, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26310765

RESUMEN

Since the invention of the first lasers in the visible-light region, research has aimed to produce short-wavelength lasers that generate coherent X-rays; the shorter the wavelength, the better the imaging resolution of the laser and the shorter the pulse duration, leading to better temporal resolution in probe measurements. Recently, free-electron lasers based on self-amplified spontaneous emission have made it possible to generate a hard-X-ray laser (that is, the photon energy is of the order of ten kiloelectronvolts) in an ångström-wavelength regime, enabling advances in fields from ultrafast X-ray spectrosopy to X-ray quantum optics. An atomic laser based on neon atoms and pumped by a soft-X-ray (that is, a photon energy of less than one kiloelectronvolt) free-electron laser has been achieved at a wavelength of 14 nanometres. Here, we use a copper target and report a hard-X-ray inner-shell atomic laser operating at a wavelength of 1.5 ångströms. X-ray free-electron laser pulses with an intensity of about 10(19) watts per square centimetre tuned to the copper K-absorption edge produced sufficient population inversion to generate strong amplified spontaneous emission on the copper Kα lines. Furthermore, we operated the X-ray free-electron laser source in a two-colour mode, with one colour tuned for pumping and the other for the seed (starting) light for the laser.

12.
J Synchrotron Radiat ; 27(Pt 4): 883-889, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33565996

RESUMEN

Ultimate focusing of an X-ray free-electron laser (XFEL) enables the generation of ultrahigh-intensity X-ray pulses. Although sub-10 nm focusing has already been achieved using synchrotron light sources, the sub-10 nm focusing of XFEL beams remains difficult mainly because the insufficient stability of the light source hinders the evaluation of a focused beam profile. This problem is specifically disadvantageous for the Kirkpatrick-Baez (KB) mirror focusing system, in which a slight misalignment of ∼300 nrad can degrade the focused beam. In this work, an X-ray nanobeam of a free-electron laser was generated using reflective KB focusing optics combined with speckle interferometry. The speckle profiles generated by 2 nm platinum particles were systematically investigated on a single-shot basis by changing the alignment of the multilayer KB mirror system installed at the SPring-8 Angstrom Compact Free-Electron Laser, in combination with computer simulations. It was verified that the KB mirror alignments were optimized with the required accuracy, and a focused vertical beam of 5.8 nm (±1.2 nm) was achieved after optimization. The speckle interferometry reported in this study is expected to be an effective tool for optimizing the alignment of nano-focusing systems and for generating an unprecedented intensity of up to 1022 W cm-2 using XFEL sources.

13.
Opt Lett ; 45(8): 2435-2438, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287252

RESUMEN

Laser-induced damage thresholds (LIDTs) of silica glasses obtained by the femtosecond soft x-ray free-electron laser (SXFEL, 13.5 nm, 70 fs) and the picosecond soft x-ray laser (SXRL, 13.9 nm, 7 ps) are evaluated. The volume of the hydroxyl group in the silica glasses influenced its LIDTs. The LIDTs obtained in this research by the femtosecond SXFEL and the picosecond SXRL were nearly identical, but were different from that by the nanosecond soft x-ray pulse. The photoionization processes of silica glass in context of the laser-induced damage mechanism (LIDM) are also discussed. In the ultra-short soft x-ray pulse irradiation regime, the LIDM can be speculated to include the spallation process with a scission of bondings.

14.
J Synchrotron Radiat ; 26(Pt 6): 2050-2054, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721750

RESUMEN

A simple method using X-ray fluorescence is proposed to diagnose the duration of an X-ray free-electron laser (XFEL) pulse. This work shows that the degree of intensity correlation of the X-ray fluorescence generated by irradiating an XFEL pulse on metal foil reflects the magnitude relation between the XFEL duration and the coherence time of the fluorescence. Through intensity correlation measurements of copper Kα fluorescence, the duration of 12 keV XFEL pulses from SACLA was evaluated to be ∼10 fs.

15.
J Synchrotron Radiat ; 26(Pt 2): 585-594, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855271

RESUMEN

An experimental platform using X-ray free-electron laser (XFEL) pulses with high-intensity optical laser pulses is open for early users' experiments at the SACLA XFEL facility after completion of the commissioning. The combination of the hard XFEL and the high-intensity laser provides capabilities to open new frontiers of laser-based high-energy-density science. During the commissioning phase, characterization of the XFEL and the laser at the platform has been carried out for the combinative utilization as well as the development of instruments and basic diagnostics for user experiments. An overview of the commissioning and the current capabilities of the experimental platform is presented.

16.
J Synchrotron Radiat ; 26(Pt 5): 1406-1411, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490128

RESUMEN

Intense sub-micrometre focusing of a soft X-ray free-electron laser (FEL) was achieved by using an ellipsoidal mirror with a high numerical aperture. A hybrid focusing system in combination with a Kirkpatrick-Baez mirror was applied for compensation of a small spatial acceptance of the ellipsoidal mirror. With this system, the soft X-ray FEL pulses were focused down to 480 nm × 680 nm with an extremely high intensity of 8.8×1016 W cm-2 at a photon energy of 120 eV, which yielded saturable absorption at the L-edge of Si (99.8 eV) with a drastic increase of transmittance from 8% to 48%.


Asunto(s)
Rayos Láser , Óptica y Fotónica/instrumentación , Calibración , Electrones , Diseño de Equipo
17.
Proc Natl Acad Sci U S A ; 113(6): 1492-7, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26811449

RESUMEN

Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

18.
Proc Natl Acad Sci U S A ; 113(28): 7745-9, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27357672

RESUMEN

Investigation of the iron phase diagram under high pressure and temperature is crucial for the determination of the composition of the cores of rocky planets and for better understanding the generation of planetary magnetic fields. Here we present X-ray diffraction results from laser-driven shock-compressed single-crystal and polycrystalline iron, indicating the presence of solid hexagonal close-packed iron up to pressure of at least 170 GPa along the principal Hugoniot, corresponding to a temperature of 4,150 K. This is confirmed by the agreement between the pressure obtained from the measurement of the iron volume in the sample and the inferred shock strength from velocimetry deductions. Results presented in this study are of the first importance regarding pure Fe phase diagram probed under dynamic compression and can be applied to study conditions that are relevant to Earth and super-Earth cores.

19.
J Synchrotron Radiat ; 25(Pt 1): 20-25, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271746

RESUMEN

The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ∼1.5 µm in full width at half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. Errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.

20.
Phys Rev Lett ; 121(8): 083901, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30192600

RESUMEN

X-ray two-photon absorption (TPA) spectrum of metallic copper is measured using a free-electron laser (XFEL). The spectrum differs from that measured by the conventional one-photon absorption (OPA), and characterized by a peak below the Fermi level, which is assigned to the transition to the 3d state. The impact of the XFEL pulse on the OPA spectrum is discussed by analyzing the pulse-energy dependence, which indicates that the intrinsic TPA spectrum is measured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA