Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Chem ; 143: 106984, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056389

RESUMEN

Inflammation is a multifaceted phenomenon triggered by potentially active mediators acutely released arachidonic acid metabolites partially in lipoxygenase (LOX) pathway which are primarily accountable for causing several diseases in humans. It is widely believed that an inhibitor of the LOX pathway represents a rational approach for designing more potent antiinflammatory leads with druggable super safety profiles. In our continual efforts in search for anti-LOX molecules, the present work was to design a new series of N-alkyl/aralkyl/aryl derivatives (7a-o) of 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol which was commenced in seriate formation of phenylcarbamoyl derivative (1), hydrazide (2), semicarbazide (3) and 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol (4). The aimed compounds were obtained by reacting 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol with assorted N-alkyl/aralkyl/aryl electrophiles. All compounds were characterized by FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and screened against soybean 15-LOX for their inhibitory potential using chemiluminescence method. All the compounds except 7m and 7h inhibited the said enzyme remarkably. Compounds 7c,7l, 7j and 7a displayed potent inhibitions ranging from IC50 1.92 ± 0.13 µM to 7.65 ± 0.12 µM. Other analogues 7g, 7o, 7e, 7b, 7d, 7k and 7n revealed excellent inhibitory values ranging from IC50 12.45 ± 0.38 µM to 24.81 ± 0.47 µM. All these compounds did not reveal DPPH radical scavenging activity. Compounds 7i-o maintained > 90 % human blood mononuclear cells (MNCs) viability at 0.125 mM as assayed by MTT whilst others were found toxic. Pharmacokinetic profiles predicted good oral bioavailability and drug-likeness properties of the active scaffolds. SAR investigations showed that phenyl substituted analogue on amide side decreased inhibitory activity due to inductive and mesomeric effects while the mono-alkyl substituted analogues were more active than disubstituted ones and ortho substituted analogues were more potent than meta substituted ones. MD simulation predicted the stability of the 7c ligand and receptor complex as shown by their relative RMSD (root mean square deviation) values. Molecular docking studies displayed hydrogen bonding between the compounds and the enzyme with Arg378 which was common in 7n, 7g, 7h and baicalein. In 7a and quercetin, hydrogen bonding was established through Asn375. RMSD values exhibited good inhibitory profiles in the order quercetin (0.73 Å) < 7 g < baicalein < 7a < 7n < 7 h (1.81 Å) and the binding free energies followed similar pattern. Density functional theory (DFT) data established good correlation between the active compounds and significant activity was associated with more stabilized LUMO (lowest unoccupied molecular orbitals) orbitals. Nevertheless, the present studies declare active analogues like 7c, 7 l, 7a, 7j as leads. Work is ongoing in derivatizing active molecules to explore more effective leads as 15-LOX inhibitors as antiinflammatory agents.


Asunto(s)
Inhibidores de la Lipooxigenasa , Quercetina , Triazoles , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Teoría Funcional de la Densidad , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Compuestos de Sulfhidrilo , Estructura Molecular
2.
Bioorg Chem ; 129: 106144, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116325

RESUMEN

The underlying correlation between the inflammation, innate immunity and cancer is extensively familiar and linked through a process mediated by three enzymes; cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450). The ever increase in the reported side effects of the antiinflammatory drugs against the targeted enzymes and the resistance developed afterwards compels the researchers to synthesize new effective molecules with safer profile. On the basis of these facts, our ongoing research on 1,3,4-oxadiazole derivatives deals with the synthesis of a new series of N-alkyl/aralky/aryl derivatives of 5-((p-tolyloxymethyl)-4H-1,3,4-oxadiazole-2-ylthio)acetamide (6a-o) which were developed by the sequential conversion of p-tolyloxyacetic acid (a) into ester (1) hydrazide (2) and 5-(p-tolyloxymethyl)-4H-1,3,4-oxadiazole-2-thiol (3). The designed compounds (6a-o) were acquired by the reaction of 1,3,4-oxadiazole (3) with numerous electrophiles (5a-o) in KOH. The synthesized analogues (6a-o) were characterized by FTIR, 1H-, 13C NMR spectroscopy, EI-MS and HR-EI-MS spectrometry, and were further assessed for their inhibitory potential against the soybean 15-LOX enzyme. The results showed excellent inhibitory potential of the compounds against the said enzyme, specifically 6o, 6b, 6n and 6e with inhibitory values (IC50 ± SEM) of 21.5 ± 0.76, 24.3 ± 0.45, 29.1 ± 0.65 and 31.3 ± 0.78 µM, respectively. These compounds displayed < 55 % blood mononuclear cells (MNCs) cellular viability as measured by MTT assay at 0.25 mM concentration. Other compounds demonstrated moderate inhibitory activities with IC50 values in the range of 33.2 ± 0.78 to 96.3 ± 0.73 µM and exhibited little cellular viability against MNCs except 6i, 6j, 6 m and 6 k that showed 61-79 % cellular viability. It was observed that most of the compounds (6o, 6b, 6n, 6e) were found more toxic towards MNCs at studied concentration of 0.25 mM. SAR studies revealed that the positions and nature of substituents accompanying phenyl ring have great influence on 15-LOX inhibitory activity. In the most active compound 6o, the amino acids Asp768 and Val126 were involved in hydrogen bonding, Thr529 was linked with π-anion interaction and π-sulphur interaction was displayed with Tyr525 and two π-alkyl interactions were formed with the benzene ring and amino acid residues Pro530 and Arg533. The in silico pharmacokinetics profiles and density functional theory calculations of the compounds further supported the in vitro findings. Further work on the synthesis of more oxadiazole derivatives is in progress in search for potential 'leads' for the drug discovery as LOX inhibitors.


Asunto(s)
Inhibidores de la Lipooxigenasa , Oxadiazoles , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxadiazoles/química , Acetamidas/química
3.
Pak J Pharm Sci ; 32(3 (Supplementary)): 1155-1162, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31303584

RESUMEN

Twelve derivatives of dihydropyridine derivatives (6-17) were synthesized and evaluated for in-vitro cholinesterases (AChE, BChE) inhibitory activity. All compounds showed potent activity with IC50 values between 0.21±0.003 to 147.14±0.12µM for AChE and among them five compounds showed potent activity with IC50 values 17.16±0.02 to 231.6±0.12µM for BChE when compared with standard Eserine (IC50 = 0.85±0.0001 µM (AChE) & 0.04±0.0001µM (BChE). The most potent compound 11 can be considered as potential lead compound showed an inhibition of 95.35±0.11 and IC50= 0.21±0.003 while compound 7 showed an inhibition of 83.45±0.13 and IC50= 17.16±0.02. It is concluded from structural activity relationship that the presence of nitro group at C-2 and C-4 position of dihydropyridine ring increase the acetyl cholinesterase and butyrylcholinesterase activities of these compounds while presence of -Br and -Cl also enhances the activities.


Asunto(s)
Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacología , Dihidropiridinas/química , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Dihidropiridinas/síntesis química , Dihidropiridinas/farmacología , Evaluación Preclínica de Medicamentos , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
4.
Int J Biol Macromol ; : 132721, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815949

RESUMEN

Alkaline phosphatases (APs, EC 3.1.3.1) belong to a superfamily of biological macromolecules that dephosphorylate many phosphometabolites and phosphoproteins and their overexpression is intricated in the spread of cancer to liver and bones, neuronal disorders including Alzheimer's disease (AD), inflammation and others. It was hypothesized that cyclooxygenase-2 (COX-2) selective inhibitors may possess anti-APs potential and may be involved in anticancer proceedings. Three COX-2 inhibitors including nimesulide, piroxicam and lornoxicam were evaluated for the inhibition of APs using in silico and in vitro methods. Molecular docking studies against tissue nonspecific alkaline phosphatase (TNAP) offered the best binding affinities for nimesulide (-11.14 kcal/mol) supported with conventional hydrogen bonding and hydrophobic interactions. MD simulations against TNAP for 200 ns and principal component analysis (PCA) reiterated the stability of ligand-receptor complexes. Molecular expression analysis of TNAP enzyme in the breast cancer cell line MCF-7 exhibited 0.24-fold downregulation with 5 µM nimesulide as compared with 0.26-fold standard 10 µM levamisole. In vitro assays against human placental AP (hPAP) displayed potent inhibitions of these drugs with IC50 values of 0.52 ±â€¯0.02 µM to 3.46 ±â€¯0.13 µM and similar results were obtained for bovine intestinal AP (bIAP). The data when generalized collectively emphasizes that the inhibition of APs by COX-2 inhibitors provides another target to work on the development of anticancer drugs.

5.
Heliyon ; 10(2): e24470, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298631

RESUMEN

Montelukast, an approved leukotriene receptor 1 (Cys-LT 1) antagonist with anti-inflammatory properties is used for the treatment of asthma and allergic rhinitis. In the present studies, montelukast was subjected to in vitro inhibitory assays followed by kinetic and in silico investigations. Montelukast demonstrated inhibitory activity against yeast α-glucosidase (IC50 44.31 ± 1.21 µM), jack bean urease (JB urease, IC50 8.72 ± 0.23 µM), human placental alkaline phosphatase (hPAP, IC50 17.53 ± 0.19 µM), bovine intestinal alkaline phosphatase (bIAP, IC50 15.18 ± 0.23 µM) and soybean 15-lipoxygenase (15-LOX, IC50 2.41 ± 0.13 µM). Kinetic studies against α-glucosidase and urease enzymes revealed its competitive mode of inhibition. Molecular expression analysis of montelukast in breast cancer cell line MCF-7 down-regulated AP by a factor of 0.27 (5 µM) compared with the 0.26 value for standard inhibitor levamisole (10 µM). Molecular docking estimated a binding affinity ranging -8.82 to -15.65 kcal/mol for the enzymes. Docking against the DNA dodecamer (ID: 1BNA) observed -9.13 kcal/mol via minor groove binding. MD simulations suggested stable binding between montelukast and the target proteins predicting strong inhibitory potential of the ligand. Montelukast features a chloroquinoline, phenyl ring, a cyclopropane group, a carboxylic group and a sulfur atom all of which collectively enhance its inhibitory potential against the said enzymes. These in vitro and computational investigations demonstrate that it is possible and suggested that the interactions of montelukast with more than one targets presented herein may be linked with the side effects presented by this drug and necessitate additional work. The results altogether suggest montelukast as an important structural scaffold possessing multitargeted features and warrant further investigations in repurposing beyond its traditional pharmacological use.

6.
ACS Omega ; 9(12): 14005-14016, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559955

RESUMEN

Helicobacter pylori infection is widespread in 50% of the world's population and is associated with gastric ulcers and related disorders that ultimately culminate in gastric cancer. Levofloxacin-based, or clarithromycin-based, triple therapy is frequently used to inhibit the bacterial urease enzyme for the eradication of H. pylori. A comprehensive investigation based on the urease inhibitory profiles of antibiotics and their computational implications is lacking in the scientific literature. The present study was aimed specifically to determine the antiurease activities within the realms of cephalosporins and fluoroquinolones by in vitro methods supported with in silico investigations. The results demonstrate the jack bean urease inhibitory activity of cephalosporins, wherein cefadroxil, cefpodoxime, cefotaxime, and cefaclor displayed inhibitions (IC50 21.35 ± 0.64 to 62.86 ± 0.78 µM) compared with the standard thiourea (IC50 21.25 ± 0.15 µM). Among fluoroquinolones, levofloxacin, ofloxacin, and gemifloxacin (IC50 7.24 ± 0.29 to 16.53 ± 0.85 µM) unveiled remarkable inhibitory profiles. Levofloxacin and ofloxacin exhibited competitive inhibition against the said enzyme. Ciprofloxacin and moxifloxacin displayed weak urease inhibitions. During molecular docking studies, Asp362, Gly279, Arg338, Asn168, Asp223, Gln364, and Met366 were involved in hydrogen bonding in fluoroquinolones, and hydrogen bonding was established with Arg338, His248, Asn168 residues, and metal Ni601 and Ni602 of the enzyme. MD simulations and MMPBSA results demonstrated the existence of significant protein-ligand binding. Overall, these results warrant further investigations into the significance of these active molecules in relation to their inhibitory potential against the targeted urease enzyme.

7.
J Biomol Struct Dyn ; 41(24): 15549-15568, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946200

RESUMEN

Inflammatory disorders are the prime contributor to public health issue and the development of more effective and safer anti-inflammatory drugs in addition to other therapeutic alternatives to treat inflammatory illnesses, particularly chronic inflammatory diseases, is one of the foremost current issues. In this regard, our present work is concerned with the synthesis of a new series of N-alkyl/aralkyl/aryl derivatives (7a-o) of 5-((p-tolyloxymethyl)-4H-1,3,4-oxadiazole-2-ylthio)propionamide which was instigated by the successive conversions of p-tolyloxyacetic acid into ester, hydrazide and 5-(p-tolyloxymethyl)-4H-1,3,4-oxadiazole-2-thiol. The planned compounds (7a-o) were attained by the reaction of 5-(p-tolyloxymethyl)-4H-1,3,4-oxadiazole-2-thiol with variety of N-alkyl/aralkyl/aryl electrophiles in potassium hydroxide and were characterized by FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and probed for their inhibiting potential against soybean 15-lipoxygenase (15-LOX) enzyme. The compounds 7a, 7n, 7 g, 7e, 7h, 7i, 7j and 7b promulgated the potent inhibiting potential with IC50 values 9.43 ± 0.45, 16.75 ± 0.49, 19.45 ± 0.37, 21.32 ± 0.46, 22.64 ± 0.56, 23.53 ± 0.62, 24.32 ± 0.45 and 29.15 ± 0.57 µM, respectively, while excellent to good inhibitory activities were shown by 7o, 7 m, 7k, 7f, 7c, 7 l and 7d with IC50 values in the range 30.29 ± 0.56 to 52.54 ± 0.64 µM. Compounds 7i-o maintained 91.12 ± 1.5 to 98.23 ± 1.2% blood mononuclear cells (MNCs) viability at 0.25 mM by MTT assay whilst compounds 7d-h observed 46.51 ± 1.3 to 57.12 ± 1.4% viability where as the most toxic compounds were 7b (12.51 ± 1.4%), 7a (28.12 ± 1.5%) and 7c (38.23 ± 1.5%) as compared with controls. Pharmacokinetic profiles predicted good oral bioavailability and drug-likeness properties of molecules as per rule of five. Molecular docking studies displayed hydrogen bonding between the compounds and the enzyme with Arg378 which was common in 7n, 7 g, 7h and baicalein. In 7a and quercetin, hydrogen bonding was established through Asn375; Tyr512 and Val589 were also involved in bonding with other analogues. RMSD (root mean square deviation) values exhibited good inhibitory profiles in the order quercetin (0.73 Å)<7 g (0.98 Å)

Asunto(s)
Glycine max , Inhibidores de la Lipooxigenasa , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Inhibidores de la Lipooxigenasa/farmacología , Quercetina , Antiinflamatorios/farmacología , Compuestos de Sulfhidrilo , Estructura Molecular
8.
Braz. J. Pharm. Sci. (Online) ; 56: e18092, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1142491

RESUMEN

We synthesized a series of compounds bearing pharmacologically important 1,3,4-oxadiazole and piperidine moieties. Spectral data analysis by 1H-NMR, 13C-NMR, IR and EI-MS was used to elucidate the structures of the synthesized molecules. Docking studies explained the different types of interaction of the compounds with amino acids, while bovine serum albumin (BSA) binding interactions showed their pharmacological effectiveness. Antibacterial screening of these compounds demonstrated moderate to strong activity against Salmonella typhi and Bacillus subtilis but only weak to moderate activity against the other three bacterial strains tested. Seven compounds were the most active members as acetyl cholinesterase inhibitors. All the compounds presented displayed strong inhibitory activity against urease. Compounds 7l, 7m, 7n, 7o, 7p, 7r, 7u, 7v, 7x and 7v were highly active, with respective IC50 values of 2.14±0.003, 0.63±0.001, 2.17±0.006, 1.13±0.003, 1.21±0.005, 6.28±0.003, 2.39±0.005, 2.15±0.002, 2.26±0.003 and 2.14±0.002 µM, compared to thiourea, used as the reference standard (IC50 = 21.25±0.15 µM). These new urease inhibitors could replace existing drugs after their evaluation in comprehensive in vivo studies.


Asunto(s)
Simulación por Computador/clasificación , Salmonella typhi/clasificación , Sulfonamidas/efectos adversos , Tiourea , Bacillus subtilis/clasificación , Ureasa , Albúmina Sérica Bovina , Preparaciones Farmacéuticas/administración & dosificación , Inhibidores de la Colinesterasa/farmacología , Concentración 50 Inhibidora , Espectroscopía de Protones por Resonancia Magnética/métodos , Análisis de Datos , Aminoácidos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA