Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Phys ; 46(4): 371-394, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33237338

RESUMEN

Reliability engineering concerned with failure of technical inanimate systems usually uses the vocabulary and notions of human mortality, e.g., infant mortality vs. senescence mortality. Yet, few data are available to support such a parallel description. Here, we focus on early-stage (infant) mortality for two inanimate systems, incandescent light bulbs and soap films, and show the parallel description is clearly valid. Theoretical considerations of the thermo-electrical properties of electrical conductors allow us to link bulb failure to inherent mechanical defects. We then demonstrate the converse, that is, knowing the failure rate for an ensemble of light bulbs, it is possible to deduce the distribution of defects in wire thickness in the ensemble. Using measurements of lifetimes for soap films, we show how this methodology links failure rate to geometry of the system; in the case presented, this is the length of the tube containing the films. In a similar manner, for a third example, the time-dependent death rate due to congenital aortic valve stenosis is related to the distribution of degrees of severity of this condition, as a function of time. The results not only validate clearly the parallel description noted above, but also point firmly to application of the methodology to humans, with the consequent ability to gain more insight into the role of abnormalities in infant mortality.


Asunto(s)
Mortalidad Infantil , Modelos Teóricos , Humanos , Lactante , Fenómenos Mecánicos , Temperatura
2.
Phys Rev E ; 102(2-1): 022905, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32942376

RESUMEN

We extend a previous analysis of the buckling properties of a linear chain of hard spheres between hard walls under transverse harmonic confinement. Two regimes are distinguished-low compression, for which the entire chain buckles, and higher compression, for which there is localized buckling. With further increase of compression, second-neighbor contacts occur; beyond this compression the structure is no longer planar, and is not treated here. A continuous model is developed which is amenable to analytical solution in the low compression regime. This is helpful in understanding the scaling properties of both finite and infinite chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA