Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 85(12): 5617-21, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23697378

RESUMEN

Here, we report the first use of resonance Raman scattering for the detection of miniaturized microscale arrays fabricated by dip-pen nanolithography. Antibody arrays for prostate-specific antigen (PSA) were printed, and a sandwich immunoassay was carried out. An enzyme-linked detection antibody was used to provide an insoluble and stable colored microdot in the recommended size range for microarray readers, which could be read with resonance Raman scattering. This gives quantitative detection as well as an improved detection limit and a larger dynamic range than that previously achieved by direct fluorescent detection methods. By Raman mapping across the arrayed area, the microdots were easily detected with very little background signal from surrounding areas. Levels of PSA as low as 25 pg/mL were detected using this method, which could be extended to a large number of useful biomarkers.


Asunto(s)
Nanotecnología/métodos , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/inmunología , Espectrometría Raman/métodos , Animales , Bovinos , Humanos , Inmunoensayo/métodos , Masculino
2.
Analyst ; 136(14): 2925-30, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21647488

RESUMEN

Advancements in lithography methods for printing biomolecules on surfaces are proving to be potentially beneficial for disease screening and biological research. Dip-pen nanolithography (DPN) is a versatile micro and nanofabrication technique that has the ability to produce functional biomolecule arrays. The greatest advantage, with respect to the printing mechanism, is that DPN adheres to the sensitive mild conditions required for biomolecules such as proteins. We have developed an optimised, high-throughput printing technique for fabricating protein arrays using DPN. This study highlights the fabrication of a prostate specific antigen (PSA) immunoassay detectable by fluorescence. Spot sizes are typically no larger than 8 µm in diameter and limits of detection for PSA are comparable with a commercially available ELISA kit. Furthermore, atomic force microscopy (AFM) analysis of the array surface gives great insight into how the nitrocellulose substrate functions to retain protein integrity. This is the first report of protein arrays being printed on nitrocellulose using the DPN technique and the smallest feature size yet to be achieved on this type of surface. This method offers a significant advance in the ability to produce dense protein arrays on nitrocellulose which are suitable for disease screening using standard fluorescence detection.


Asunto(s)
Colodión/química , Inmunoensayo/métodos , Antígeno Prostático Específico/análisis , Análisis por Matrices de Proteínas/métodos , Anticuerpos/inmunología , Colorantes Fluorescentes/química , Microscopía Fluorescente , Nanotecnología/métodos , Análisis por Matrices de Proteínas/instrumentación
3.
Lab Chip ; 10(13): 1662-70, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20390207

RESUMEN

Reproducible control of stem cell populations, regardless of their original source, is required for the true potential of these cells to be realised as medical therapies, cell biology research tools and in vitro assays. To date there is a lack of consistency in successful output when these cells are used in clinical trials and even simple in vitro experiments, due to cell and material variability. The successful combination of single chemistries in nanoarray format to control stem cell, or any cellular behaviour has not been previously reported. Here we report how homogenously nanopatterned chemically modified surfaces can be used to initiate a directed cellular response, particularly mesenchymal stem cell (MSC) differentiation, in a highly reproducible manner without the need for exogenous biological factors and heavily supplemented cell media. Successful acquisition of these data should lead to the optimisation of cell selective properties of materials, further enhancing the role of nanopatterned substrates in cell biology and regenerative medicine. The successful design and comparison of homogenously molecularly nanopatterned surfaces and their direct effect on human MSC adhesion and differentiation are reported in this paper. Planar gold surfaces were patterned by dip pen nanolithography (DPN) to produce arrays of nanodots with optimised fixed diameter of 70 nanometres separated by defined spacings, ranging from 140 to 1000 nm with terminal functionalities of simple chemistries including carboxyl, amino, methyl and hydroxyl. These nanopatterned surfaces exhibited unprecedented control of initial cell interactions and subsequent control of cell phenotype and offer significant potential for the future.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/instrumentación , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Técnicas Analíticas Microfluídicas/instrumentación , Micromanipulación/instrumentación , Microscopía de Fuerza Atómica/instrumentación , Fotograbar/instrumentación , Diferenciación Celular , Células Cultivadas , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Humanos , Masculino , Mecanotransducción Celular/fisiología , Medicina Regenerativa/instrumentación
4.
Methods Mol Biol ; 1777: 283-303, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29744843

RESUMEN

Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.


Asunto(s)
Hidrogeles/química , Péptidos/química , Multimerización de Proteína , Materiales Biocompatibles/química , Técnicas de Cultivo de Célula , Hidrogeles/aislamiento & purificación , Microscopía , Péptidos/aislamiento & purificación , Esferoides Celulares
5.
Lab Chip ; 17(12): 2135-2138, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28569325

RESUMEN

Correction for 'Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine' by Judith M. Curran et al., Lab Chip, 2010, 10, 1662-1670.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA