Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(20): 9101-9112, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35543441

RESUMEN

Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.

2.
Chemistry ; 27(6): 2165-2174, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33210814

RESUMEN

Ceria particles play a key role in catalytic applications such as automotive three-way catalytic systems in which toxic CO and NO are oxidized and reduced to safe CO2 and N2 , respectively. In this work, we explore the incorporation of Cu and Cr metals as dopants in the crystal structure of ceria nanorods prepared by a single-step hydrothermal synthesis. XRD, Raman and XPS confirm the incorporation of Cu and Cr in the ceria crystal lattices, offering ceria nanorods with a higher concentration of oxygen vacancies. XPS also confirms the presence of Cr and Cu surface species. H2 -TPR and XPS analysis show that the simultaneous Cu and Cr co-doping results in a catalyst with a higher surface Cu concentration and a much-enhanced surface reducibility, in comparison with either undoped or singly doped (Cu or Cr) ceria nanorods. While single Cu doping enhances catalytic CO oxidation and Cr doping improves catalytic NO reduction, co-doping with both Cu and Cr enhances the benefits of both dopants in a synergistic manner employing roughly a quarter of dopant weight.

3.
Chemistry ; 26(30): 6862-6868, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32017277

RESUMEN

Anchoring a homogeneous catalyst onto a heterogeneous support facilitates separation of the product from the catalyst, and catalyst-substrate interactions can also modify reactivity. Herein we describe the synthesis of composite materials comprising carbon nitride (g-C3 N4 ) as the heterogeneous support and the well-established homogeneous catalyst moiety [Cp*IrCl]+ (where Cp*=η5 -C5 Me5 ), commonly used for catalytic hydrogenation. Coordination of [Cp*IrCl]+ to g-C3 N4 occurs directly at exposed edge sites with a κ2 N,N' binding motif, leading to a primary inner coordination sphere analogous to known homogeneous complexes of the general class [Cp*IrCl(NN-κ2 N,N')]+ (where N,N'=a bidentate nitrogen ligand). Hydrogenation of unsaturated substrates using the composite catalyst is selective for terminal alkenes, which is attributed to the restricted steric environment of the outer coordination sphere at the edge-sites of g-C3 N4 .

4.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1371-1381, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28189722

RESUMEN

Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development is largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring.


Asunto(s)
Blastocisto/metabolismo , Proteínas en la Dieta , Epigénesis Genética , Desarrollo Fetal , Regulación del Desarrollo de la Expresión Génica , Desarrollo Musculoesquelético , Complicaciones del Embarazo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Deficiencia de Proteína/metabolismo , Animales , Blastocisto/patología , Femenino , Masculino , Ratones , Embarazo , Complicaciones del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/patología , Deficiencia de Proteína/patología
5.
Nat Mater ; 15(2): 178-82, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26569475

RESUMEN

The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.


Asunto(s)
Ensayo de Materiales/métodos , Dióxido de Silicio/química , Catálisis , Coloides , Microscopía Electrónica de Transmisión , Paladio , Platino (Metal) , Porosidad
8.
J Paediatr Child Health ; 55(10): 1280-1282, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31629384
9.
ACS Appl Mater Interfaces ; 16(27): 35675-35685, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38932607

RESUMEN

In electrochemical energy storage devices, the interface between the electrode and the electrolyte plays a crucial role. A solid electrolyte interphase (SEI) is formed on the electrode surface due to spontaneous decomposition of the electrolyte, which in turn controls the dynamics of ion migration during charge and discharge cycles. However, the dynamic nature of the SEI means that its chemical structure evolves over time and as a function of the applied bias; thus, a true operando study is extremely valuable. X-ray photoelectron spectroscopy (XPS) is a widely used technique to understand the surface electronic and chemical properties, but the use of ultrahigh vacuum in standard instruments is a major hurdle for their utilization in measuring wet electrochemical processes. Herein, we introduce a 3-electrode electrochemical cell to probe the behavior of Na ions and the formation of SEI at the interface of an ionic liquid (IL) electrolyte and an aluminum electrode under operando conditions. A system containing 0.5 molar NaTFSI dissolved in the IL [BMIM][TFSI] was investigated using an Al working electrode and Pt counter and reference electrodes. By optimizing the scan rate of both XPS and cyclic voltammetry (CV) techniques, we captured the formation and evolution of SEI chemistry using real-time spectra acquisition techniques. A CV scan rate of 2 mVs-1 was coupled with XPS snapshot spectra collected at 10 s per core level. The technique demonstrated here provides a platform for the chemical analysis of materials beyond batteries.

10.
Glob Chall ; 8(6): 2300073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868605

RESUMEN

A strategic roadmap for noncarbonized fuels is a global priority, and the reduction of carbon dioxide emissions is a key focus of the Paris Agreement to mitigate the effects of rising temperatures. In this context, hydrogen is a promising noncarbonized fuel, but the pace of its implementation will depend on the engineering advancements made at each step of its value chain. To accelerate its adoption, various applications of hydrogen across industries, transport, power, and building sectors have been identified, where it can be used as a feedstock, fuel, or energy carrier and storage. However, widespread usage of hydrogen will depend on its political, industrial, and social acceptance. It is essential to carefully assess the hydrogen value chain and compare it with existing solar technologies. The major challenge to widespread adoption of hydrogen is its cost as outlined in the roadmap for hydrogen. It needs to be produced at the levelized cost of hydrogen of less than $2 kg-1 to be competitive with the established process of steam methane reforming. Therefore, this review provides a comprehensive analysis of each step of the hydrogen value chain, outlining both the current challenges and recent advances.

11.
ACS Sens ; 9(3): 1565-1574, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38447101

RESUMEN

Molecular recognition and sensing can be coupled to interfacial capacitance changes on graphene foam surfaces linked to double layer effects and coupled to enhanced quantum capacitance. 3D graphene foam film electrodes (Gii-Sens; thickness approximately 40 µm; roughness factor approximately 100) immersed in aqueous buffer media exhibit an order of magnitude jump in electrochemical capacitance upon adsorption of a charged molecular receptor based on pyrene-appended boronic acids (here, 4-borono-1-(pyren-2-ylmethyl)pyridin-1-ium bromide, or abbreviated T1). This pyrene-appended pyridinium boronic acid receptor is employed here as a molecular receptor for lactate. In the presence of lactate and at pH 4.0 (after pH optimization), the electrochemical capacitance (determined by impedance spectroscopy) doubles again. Lactic acid binding is expressed with a Hillian binding constant (Klactate = 75 mol-1 dm3 and α = 0.8 in aqueous buffer, Klactate = 460 mol-1 dm3 and α = 0.8 in artificial sweat, and Klactate = 340 mol-1 dm3 and α = 0.65 in human serum). The result is a selective molecular probe response for lactic acid with LoD = 1.3, 1.4, and 1.8 mM in aqueous buffer media (pH 4.0), in artificial sweat (adjusted to pH 4.7), and in human serum (pH adjusted to 4.0), respectively. The role of the pyrene-appended boronic acid is discussed based on the double layer structure and quantum capacitance changes. In the future, this new type of molecular capacitance sensor could provide selective enzyme-free analysis without analyte consumption for a wider range of analytes and complex environments.


Asunto(s)
Grafito , Ácido Láctico , Humanos , Ácido Láctico/análisis , Grafito/química , Ácidos Borónicos/química , Sudor/química , Electrodos
12.
Nat Commun ; 15(1): 487, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216556

RESUMEN

Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/ß-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/ß-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.


Asunto(s)
Nanocables , beta Catenina , Animales , Ratones , Silicio/farmacología , Porosidad , Litio/farmacología , Ácido Silícico/farmacología , Cemento Dental
13.
Glob Chall ; 7(3): 2200165, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36910466

RESUMEN

Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen  are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar-driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large-scale examples. In order for solar-assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market.

14.
ACS Appl Mater Interfaces ; 15(4): 5478-5486, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688601

RESUMEN

We report the first result of a study in which molecular iodine has been incorporated via incipient wetness impregnation into the two-dimensional semiconducting metal-organic framework (MOF) Cu3(2,3,6,7,10,11-hexahydroxytriphenylene)2 Cu3(HHTP)2 to enhance its thermoelectric properties. A power factor of 0.757 µW m-1 K-2 for this MOF was obtained which demonstrates that this provides an effective route for the preparation of moderate-performance thermoelectric MOFs.

15.
Nanomaterials (Basel) ; 13(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111019

RESUMEN

Recyclable PdCu single atom alloys supported on Al2O3 were applied to the selective hydrogenation of crotonaldehyde to elucidate the minimum number of Pd atoms required to facilitate the sustainable transformation of an α,ß-unsaturated carbonyl molecule. It was found that, by diluting the Pd content of the alloy, the reaction activity of Cu nanoparticles can be accelerated, enabling more time for the cascade conversion of butanal to butanol. In addition, a significant increase in the conversion rate was observed, compared to bulk Cu/Al2O3 and Pd/Al2O3 catalysts when normalising for Cu and Pd content, respectively. The reaction selectivity over the single atom alloy catalysts was found to be primarily controlled by the Cu host surface, mainly leading to the formation of butanal but at a significantly higher rate than the monometallic Cu catalyst. Low quantities of crotyl alcohol were observed over all Cu-based catalysts but not for the Pd monometallic catalyst, suggesting that it may be a transient species converted immediately to butanol and or isomerized to butanal. These results demonstrate that fine-tuning the dilution of PdCu single atom alloy catalysts can leverage the activity and selectivity enhancement, and lead to cost-effective, sustainable, and atom-efficient alternatives to monometallic catalysts.

16.
J Phys Chem C Nanomater Interfaces ; 127(1): 660-671, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36660098

RESUMEN

First principles modeling of anatase TiO2 surfaces and their interfacial contacts shows that defect-induced trap states within the band gap arise from intrinsic structural distortions, and these can be corrected by modification with Zr(IV) ions. Experimental testing of these predictions has been undertaken using anatase nanocrystals modified with a range of Zr precursors and characterized using structural and spectroscopic methods. Continuous-wave electron paramagnetic resonance (EPR) spectroscopy revealed that under illumination, nanoparticle-nanoparticle interfacial hole trap states dominate, which are significantly reduced after optimizing the Zr doping. Fabrication of nanoporous films of these materials and charge injection using electrochemical methods shows that Zr doping also leads to improved electron conductivity and mobility in these nanocrystalline systems. The simple methodology described here to reduce the concentration of interfacial defects may have wider application to improving the efficiency of systems incorporating metal oxide powders and films including photocatalysts, photovoltaics, fuel cells, and related energy applications.

17.
Chem Commun (Camb) ; 59(93): 13891-13894, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37934411

RESUMEN

Herein, ammonium fluoride is reported as an additive within 1 M ZnSO4 aqueous electrolyte to improve zinc anodes. The as-formed electrostatic shielding layer and ZnF2-rich solid-state interphase layer can jointly inhibit side reactions and dendrite growth. Consequently, symmetric Zn‖Zn cells, asymmetric Zn‖Cu cells and Zn‖MnO2 cells with the additives present dramatically enhanced performance in comparison to the ones with pure ZnSO4 electrolyte counterparts. This work proposes a facile but effective method to achieve highly reversible zinc anodes.

18.
Chempluschem ; 88(12): e202300413, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796663

RESUMEN

5-hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5-hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N2 porosimetry, XPS and ATR-IR. All four catalysts display enhanced active site normalised activity and productivity, relative to alternative silica supported equivalent systems in the literature, with in-pore diffusion of both substrate and product key to both performance and humin formation pathway. An increase in-pore diffusion coefficient of 5-hydroxymethylfurfural within wormlike and stellate structures results in optimal productivity. In contrast, poor diffusion within a raspberry-like morphology decreases rates of 5-hydroxymethylfurfural production and increases its consumption within humin formation.

19.
ACS Appl Mater Interfaces ; 15(20): 24528-24540, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37186876

RESUMEN

Herein, the alcoholysis of furfuryl alcohol in a series of SBA-15-pr-SO3H catalysts with different pore sizes is reported. Elemental analysis and NMR relaxation/diffusion methods show that changes in pore size have a significant effect on catalyst activity and durability. In particular, the decrease in catalyst activity after catalyst reuse is mainly due to carbonaceous deposition, whereas leaching of sulfonic acid groups is not significant. This effect is more pronounced in the largest-pore-size catalyst C3, which rapidly deactivates after one reaction cycle, whereas catalysts with a relatively medium and small average pore size (named, respectively, C2 and C1) deactivate after two reaction cycles and to a lesser extent. CHNS elemental analysis showed that C1 and C3 experience a similar amount of carbonaceous deposition, suggesting that the increased reusability of the small-pore-size catalyst can be attributed to the presence of SO3H groups mostly present on the external surface, as corroborated by results on pore clogging obtained by NMR relaxation measurements. The increased reusability of the C2 catalyst is attributed to a lower amount of humin being formed and, at the same time, reduced pore clogging, which helps to maintain accessible the internal pore space.

20.
Nat Commun ; 14(1): 1321, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898996

RESUMEN

The solid electrolyte interphase in rechargeable Li-ion batteries, its dynamics and, significantly, its nanoscale structure and composition, hold clues to high-performing and safe energy storage. Unfortunately, knowledge of solid electrolyte interphase formation is limited due to the lack of in situ nano-characterization tools for probing solid-liquid interfaces. Here, we link electrochemical atomic force microscopy, three-dimensional nano-rheology microscopy and surface force-distance spectroscopy, to study, in situ and operando, the dynamic formation of the solid electrolyte interphase starting from a few 0.1 nm thick electrical double layer to the full three-dimensional nanostructured solid electrolyte interphase on the typical graphite basal and edge planes in a Li-ion battery negative electrode. By probing the arrangement of solvent molecules and ions within the electric double layer and quantifying the three-dimensional mechanical property distribution of organic and inorganic components in the as-formed solid electrolyte interphase layer, we reveal the nanoarchitecture factors and atomistic picture of initial solid electrolyte interphase formation on graphite-based negative electrodes in strongly and weakly solvating electrolytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA