Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901964

RESUMEN

Plasmon waveguide resonance (PWR) sensors exhibit narrow resonances at the two orthogonal polarizations, transverse electric (TE) and transverse magnetic (TM), which are narrower by almost an order of a magnitude than the standard surface plasmon resonance (SPR), and thus the figure of merit is enhanced. This fact is useful for measuring optical anisotropy of materials on the surface and determining the orientation of molecules with high resolution. Using the diverging beam approach and a liquid crystal retarder, we present experimental results by simultaneous detection of TE and TM polarized resonances as well as using fast higher contrast serial detection with a variable liquid crystal retarder. While simultaneous detection makes the system simpler, a serial one has the advantage of obtaining a larger contrast of the resonances and thus an improved signal-to-noise ratio. Although the sensitivity of the PWR resonances is smaller than the standard SPR, the angular width is much smaller, and thus the figure of merit is improved. When the measurement methodology has a high enough angular resolution, as is the one presented here, the PWR becomes advantageous over other SPR modes. The possibility of carrying out exact numerical simulations for anisotropic molecules using the 4 × 4 matrix approach brings another advantage of the PWR over SPR on the possibility of extracting the orientation of molecules adsorbed to the surface. High sensitivity of the TE and TM signals to the anisotropic molecules orientation is found here, and comparison to the experimental data allowed detection of the orientation of lipids on the sensor surface. The molecular orientations cannot be fully determined from the TM polarization alone as in standard SPR, which underlines the additional advantage of the PWR technique.

2.
Sensors (Basel) ; 19(13)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288404

RESUMEN

Dielectric grating-based sensors are usually based on the guided mode resonance (GMR) obtained using a thin planar waveguide layer (PWL) adjacent to a thin subwavelength grating layer. In this work, we present a detailed investigation of thick subwavelength dielectric grating structures that exhibit reflection resonances above a certain thickness without the need for the waveguide layer, showing great potential for applications in biosensing and tunable filtering. Analytic and numerical results are thoroughly discussed, as well as an experimental demonstration of the structure as a chemical sensor in the SWIR (short wave infrared) spectral range (1200-1800 nm). In comparison to the GMR structure with PWL, the thick grating structure has several unique properties: (i) It gives higher sensitivity when the spaces are filled, with the analyte peaking at certain space values due to an increase in the interaction volume between the analyte and the evanescent optical field between the grating lines; (ii) the TM (transverse magnetic) resonance, in certain cases, provides a better figure of merit; (iii) the sensitivity increases as the grating height increases; (iii) the prediction of the resonance locations based on the effective medium approximation does not give satisfactory results when the grating height is larger than a certain value, and the invalidity becomes more severe as the period increases; (iv) a sudden increase in the Q-factor of the resonance occurs at a specific height value accompanied by the high local field enhancement (~103) characteristic of a nano-antenna type pattern. Rigorous numerical simulations of the field distribution are presented to explain the different observed phenomena.

3.
Appl Opt ; 53(29): H91-101, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25322437

RESUMEN

Liquid crystal Fabry-Perot tunable filters are investigated in detail, with special attention to their manufacturability, design, tolerances, and polarization independence. The calculations were performed both numerically and analytically using the 4×4 propagation matrix method. A simplified analytic expression for the propagation matrix is derived for the case of nematic LC in the homogeneous geometry. At normal incidence, it is shown that one can use the 2×2 Abeles matrix method; however, at oblique incidence, the 4×4 matrix method is needed. The effects of dephasing originating from wedge or noncollimated light beams are investigated. Due to the absorption of the indium tin oxide layer and as an electrode, its location within the mirror multilayered stack is very important. The optimum location is found to be within the stack and not on its top or bottom. Finally, we give more detailed experimental results of our polarization-independent configuration that uses polarization diversity with a Wollaston prism.

4.
Biosens Bioelectron ; 228: 115204, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913883

RESUMEN

Unwelcomed biofilms are problematic in food industries, surgical devices, marine applications, and wastewater treatment plants, essentially everywhere where there is moisture. Very recently, label-free advanced sensors such as localized and extended surface plasmon resonance (SPR) have been explored as tools for monitoring biofilm formation. However, conventional noble metal SPR substrates suffer from low penetration depth (100-300 nm) into the dielectric medium above the surface, preventing the reliable detection of large entities of single or multi-layered cell assemblies like biofilms which can grow up to a few micrometers or more. In this study, we propose using a plasmonic insulator-metal-insulator (IMI) structure (SiO2-Ag-SiO2) with a higher penetration depth based on a diverging beam single wavelength format of Kretschmann configuration in a portable SPR device. An SPR line detection algorithm for locating the reflectance minimum of the device helps to view changes in refractive index and accumulation of the biofilm in real-time down to 10-7 RIU precision. The optimized IMI structure exhibits strong penetration dependence on wavelength and incidence angle. Within the plasmonic resonance, different angles penetrate different depths, showing a maximum near the critical angle. At the wavelength of 635 nm, a high penetration depth of more than 4 µm was obtained. Compared to a thin gold film substrate, for which the penetration depth is only ∼200 nm, the IMI substrate provides more reliable results. The average thickness of the biofilm after 24 h of growth was found to be between 6 and 7 µm with ∼63% live cell volume, as estimated from confocal microscopic images using an image processing tool. To explain this saturation thickness, a graded index biofilm structure is proposed in which the refractive index decreases with the distance from the interface. Furthermore, when plasma-assisted degeneration of biofilms was studied in a semi-real-time format, there was almost no effect on the IMI substrate compared to the gold substrate. The growth rate over the SiO2 surface was higher than on gold, possibly due to differences between surface charge effects. On the gold, the excited plasmon generates an oscillating cloud of electrons, while for the SiO2 case, this does not happen. This methodology can be utilized to detect and characterize biofilms with better signal reliability with respect to concentration and size dependence.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Dióxido de Silicio , Oro , Biopelículas
5.
J Colloid Interface Sci ; 530: 328-337, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29982025

RESUMEN

Organophosphate compounds that are used as pesticides affect the nervous system by binding irreversibly to the active site of the enzyme acetylcholine esterase (AChE) and disrupting neuro-signaling nerve cells. In this study we characterized adsorption of paraoxon to a set of designed peptides that present different arrangements of the three amino acids of the AChE catalytic site: histidine, glutamic-acid and serine. The peptides set included two ß-strands with no net charge and three ß-hairpins that differ in their net charge. Circular dichroism, Thioflavin T assays and TEM images provided only qualitative insights on paraoxon binding to the different peptides. Paraoxon binding to the different peptides was measured with dialysis membrane tubes filled with the peptide solutions and suspended in a reservoir of paraoxon solution. Among all the tested peptides, the single strand peptide, denoted ssESH exhibited at 100 µM in random conformation prefibrillar state, the maximum paraoxon adsorption, with a binding mol ratio of one paraoxon per two peptides and an estimated equilibrium binding constant 5 ∗ 104 M-1. The three ß-hairpin peptides demonstrated that a net negative charge is unfavorable for paraoxon adsorption. Surface enhanced Raman spectroscopy measurements with ssESH enabled the detection of nanomolar adsorbed concentrations of paraoxon.


Asunto(s)
Acetilcolinesterasa/química , Dominio Catalítico/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Insecticidas/farmacología , Paraoxon/farmacología , Péptidos/química , Acetilcolinesterasa/metabolismo , Adsorción , Inhibidores de la Colinesterasa/toxicidad , Humanos , Insecticidas/toxicidad , Paraoxon/toxicidad , Péptidos/metabolismo , Conformación Proteica en Lámina beta/efectos de los fármacos , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA