Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 238(4): 1578-1592, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939621

RESUMEN

The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare 'core' effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts.


Asunto(s)
Cucumis sativus , Cucurbitaceae , Virulencia/genética , Especificidad del Huésped , Cucumis sativus/microbiología , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Cucurbitaceae/microbiología , Transcriptoma , Nicotiana/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
PLoS Pathog ; 13(2): e1006189, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28146587

RESUMEN

Plant infection by pathogenic fungi involves the differentiation of appressoria, specialized infection structures, initiated by fungal sensing and responding to plant surface signals. How plant fungal pathogens control infection-related morphogenesis in response to plant-derived signals has been unclear. Here we showed that the morphogenesis-related NDR kinase pathway (MOR) of the cucumber anthracnose fungus Colletotrichum orbiculare is crucial for appressorium development following perception of plant-derived signals. By screening of random insertional mutants, we identified that the MOR element CoPag1 (Perish-in-the-absence-of-GYP1) is a key component of the plant-derived signaling pathway involved in appressorium morphogenesis. Constitutive activation of the NDR kinase CoCbk1 (Cell-wall-biosynthesis-kinase-1) complemented copag1 defects. Furthermore, copag1 deletion impaired CoCbk1 phosphorylation, suggesting that CoPag1 functions via CoCbk1 activation. Searching for the plant signals that contribute to appressorium induction via MOR, we found that the cutin monomer n-octadecanal, degraded from the host cuticle by conidial esterases, functions as a signal molecule for appressorium development. Genome-wide transcriptional profiling during appressorium development revealed that MOR is responsible for the expression of a subset of the plant-signal-induced genes with potential roles in pathogenicity. Thus, MOR of C. orbiculare has crucial roles in regulating appressorium development and pathogenesis by communicating with plant-derived signals.


Asunto(s)
Colletotrichum/patogenicidad , Cucumis sativus/microbiología , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Transducción de Señal/fisiología , Western Blotting , Colletotrichum/metabolismo , Electroforesis en Gel de Poliacrilamida , Regulación Fúngica de la Expresión Génica , Espectrometría de Masas , Morfogénesis , Mutagénesis Sitio-Dirigida , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas , Técnicas del Sistema de Dos Híbridos
3.
Heliyon ; 4(3): e00554, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29560466

RESUMEN

Accurate simulations of carbon fiber-reinforced plastic (CFRP) molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA