Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 80(1): 87-101.e5, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931746

RESUMEN

Studies in three mouse models of breast cancer identified profound discrepancies between cell-autonomous and systemic Akt1- or Akt2-inducible deletion on breast cancer tumorigenesis and metastasis. Although systemic Akt1 deletion inhibits metastasis, cell-autonomous Akt1 deletion does not. Single-cell mRNA sequencing revealed that systemic Akt1 deletion maintains the pro-metastatic cluster within primary tumors but ablates pro-metastatic neutrophils. Systemic Akt1 deletion inhibits metastasis by impairing survival and mobilization of tumor-associated neutrophils. Importantly, either systemic or neutrophil-specific Akt1 deletion is sufficient to inhibit metastasis of Akt-proficient tumors. Thus, Akt1-specific inhibition could be therapeutic for breast cancer metastasis regardless of primary tumor origin. Systemic Akt2 deletion does not inhibit and exacerbates mammary tumorigenesis and metastasis, but cell-autonomous Akt2 deletion prevents breast cancer tumorigenesis by ErbB2. Elevated circulating insulin level induced by Akt2 systemic deletion hyperactivates tumor Akt, exacerbating ErbB2-mediated tumorigenesis, curbed by pharmacological reduction of the elevated insulin.


Asunto(s)
Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Animales/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Carcinogénesis/patología , Femenino , Eliminación de Gen , Humanos , Insulina/metabolismo , Isoenzimas/metabolismo , Metástasis de la Neoplasia , Neutrófilos/metabolismo , Receptor ErbB-2/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(15): e2220770120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011211

RESUMEN

The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.


Asunto(s)
Proteínas de Drosophila , Drosophila , Factores de Transcripción E2F , Fosfoglicerato Quinasa , Animales , Cromatina , Drosophila/genética , Factores de Transcripción E2F/genética , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Regiones Promotoras Genéticas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Neurol Sci ; 45(7): 3225-3243, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381392

RESUMEN

BACKGROUND: Sporadic amyotrophic lateral sclerosis (sALS) is a severe neurodegenerative disease characterized by continuous diminution of motor neurons in the brain and spinal cord. Earlier studies indicated that the DPP6 gene variant has a role in the development of sALS. This meta-analysis was designed to uncover the role of rs10260404 polymorphism of the DPP6 gene and its association with sALS. METHODS: All case-control articles published prior to October 2022 on the association between DPP6 (rs10260404) polymorphism and sALS risk were systematically extracted from different databases which include PubMed, PubMed Central, and Google Scholar. Overall odds ratios (ORs) and "95% confidence intervals (CIs)" were summarized for various genetic models. Subgroup and heterogeneity assessments were performed. Egger's and "Begg's tests were applied to evaluate publication bias. Trial sequential analysis (TSA) and false-positive report probability (FPRP) were performed. RESULTS: Nine case-control studies containing 4202 sALS cases and 4444 healthy controls were included in the meta-analysis. A significant association of the DPP6 (rs10260404) variant with an increased sALS risk in overall pooled subjects under allelic model [C allele vs. T allele, OR = 1.149, 95% CI (1.010-1.307), p-value = 0.035], dominant model [CC + CT vs. TT, OR = 1.165, 95% CI (1.067-1.273), p-value = 0.001], and homozygote comparison [CC vs. TT, OR = 1.421, 95% CI (1.003-2.011), p-value = 0.048] were observed. Moreover, in subgroup analysis by nationality, remarkable associations were detected in Dutch, Irish, American, and Swedish under allelic, dominant, and homozygote models. Additionally, stratification analysis by ethnicity exhibited an association with sALS risk among Caucasians and Americans under different genetic models. Interestingly, none of the models found any significant association with Asians. CONCLUSION: The present meta-analysis indicates that DPP6 (rs10260404) polymorphism could be a candidate risk factor for sALS predisposition.


Asunto(s)
Esclerosis Amiotrófica Lateral , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Predisposición Genética a la Enfermedad/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Estudios de Casos y Controles , Proteínas del Tejido Nervioso , Canales de Potasio
4.
Mol Genet Genomics ; 298(5): 1201-1209, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392217

RESUMEN

Polymorphism of transcription factor 7-like 2 (TCF7L2) has a link with type 2 diabetes mellitus (T2DM) through ß cell dysfunction that causes defect in blood glucose homeostasis. This case-control study recruited 67 T2DM as cases and 65 age-matched healthy individuals as controls to determine whether the polymorphism rs12255372 (G > T) in the TCF7L2 gene have an association with T2DM in Bangladeshi population. Genomic DNA was purified from peripheral whole blood sample and direct Sanger sequencing was done for genotyping of SNP. Bivariate logistic regression was done to find out the association between genetic variant and T2DM. In our study, the minor T allele frequency was significantly more frequent in T2DM group than healthy controls (29.1% vs. 16.9%). After adjusting with confounding factors, heterozygous-genotype GT had higher odds of developing T2DM (OR 2.4; 95% CI: 1.0-5.5; p value = 0.04) and in dominant model, having SNP in TCF7L2 increased the risk of T2DM 2.3 times (95% CI: 1.0-5.2; p value = 0.04). In interaction model, genetic susceptible SNP cases interacted significantly with increasing age and BMI, female gender, and having family history of diabetes mellitus to develop T2DM (pinteraction < 0.001). Having minor T allele either in heterozygous or homozygous variant form of rs12255372 (G > T) TCF7L2 had significant association with T2DM. In conclusion, TCF7L2 gene variant increases risk of developing T2DM among the Bangladeshi population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Femenino , Humanos , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Factor 1 de Transcripción de Linfocitos T/genética , Proteína 2 Similar al Factor de Transcripción 7/genética
5.
Mol Divers ; 27(4): 1613-1632, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36006502

RESUMEN

Tuberculosis (TB) is a contagious disease that predominantly affects the lungs, but can also spread to other organs via the bloodstream. TB affects about one-fourth population of the world. With age, the effectiveness of Bacillus Calmette-Guérin (BCG), the only authorized TB vaccine, decreases. In the quest for a prophylactic and immunotherapeutic vaccine, in this study, a hypothetical mRNA vaccine is delineated, named MT. P495, implementing in silico and immunoinformatics approaches to evaluate key aspects and immunogenic epitopes across the PstS1, a highly conserved periplasmic protein of Mycobacterium tuberculosis (Mtb). PstS1 elicited the potential to generate 99.9% population coverage worldwide. The presence of T- and B-cell epitopes across the PstS1 protein were validated using several computational prediction tools. Molecular docking and dynamics simulation confirmed stable epitope-allele interaction. Immune cell response to the antigen clearance rate was verified by the in silico analysis of immune simulation. Codon optimization confirmed the efficient translation of the mRNA in the host cell. With Toll-like receptors, the vaccine exhibited stable and strong interactions. Findings suggest that the MT. P495 vaccine probably will elicit specific immune responses against Mtb. This mRNA vaccine model is a ready source for further wet-lab validation to confirm the efficacy of this proposed vaccine candidate.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Unión a Fosfato , Tuberculosis/prevención & control , Epítopos , Vacunas de ARNm
6.
Mol Divers ; 27(3): 1067-1085, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35690957

RESUMEN

Novel drug compound hunting was carried out for SARS-CoV-2 proteins with low mutation susceptibility. The probability of escape mutation and drug resistance is lower if conserved microbial proteins are targeted by therapeutic drugs. Mutation rate of all SARS-CoV-2 proteins were analyzed via multiple sequence alignment Non-Structural Protein 13 and Non-Structural Protein 16 were selected for the current study due to low mutation rate among viral strains and significant functionality. Cross-species mutation rate analysis for NSP13 and NSP16 showed these are well-conserved proteins among four coronaviral species. Viral helicase inhibitors, identified using literature-mining, were docked against NSP13. Pharmacophore-based screening of 11,375 natural compounds was conducted for NSP16. Stabilities of top compounds inside human body were confirmed via molecular dynamic simulation. ADME properties and LD50 values of the helicase inhibitors and Ambinter natural compounds were analyzed. Compounds against NSP13 showed binding affinities between -10 and -5.9 kcal/mol whereby ivermectin and scutellarein showed highest binding energies of -10 and -9.9 kcal/mol. Docking of 18 hit compounds against NSP16 yielded binding affinities between -8.9 and -4.1 kcal/mol. Hamamelitannin and deacyltunicamycin were the top compounds with binding affinities of -8.9 kcal/mol and -8.4 kcal/mol. The top compounds showed stable ligand-protein interactions in molecular dynamics simulation. The analyses revealed two hit compounds against each targeted protein displaying stable behavior, high binding affinity and molecular interactions. Conversion of these compounds into drugs after in vitro experimentation can become better treatment options to elevate COVID management.


Asunto(s)
COVID-19 , Humanos , Reposicionamiento de Medicamentos , Farmacóforo , SARS-CoV-2 , Ivermectina , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
7.
Mol Cell ; 57(3): 506-20, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620562

RESUMEN

DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle. DYRK1A-bound promoter sequences are highly enriched in a conserved palindromic motif, which is necessary to drive DYRK1A-dependent transcriptional activation. DYRK1A phosphorylates the C-terminal domain (CTD) of RNAPII at Ser2 and Ser5. Depletion of DYRK1A results in reduced association of RNAPII at the target promoters as well as hypophosphorylation of the RNAPII CTD along the target gene bodies. These results are consistent with DYRK1A being a transcriptional regulator by acting as a CTD kinase.


Asunto(s)
Regiones Promotoras Genéticas , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , ARN Mensajero/metabolismo , Sitios de Unión , Línea Celular Tumoral , Núcleo Celular/genética , Células HeLa , Humanos , Secuencias Invertidas Repetidas , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , ARN Polimerasa II , Serina/metabolismo , Transcripción Genética , Quinasas DyrK
8.
Biosci Biotechnol Biochem ; 87(4): 395-410, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36592962

RESUMEN

The tobacco BY-2 cell line is one of the most utilized plant cell lines. After long-term culture, the cells turn brown to black, but the causal pigment is unknown. We successfully isolated a blackish-brown pigment from BY-2 cells cultured for 3 weeks. Morphological and spectroscopic analyses indicated that the pigment had similar features to a melanin-like substance reported previously. Furthermore, physicochemical analyses revealed that this pigment possessed most of the properties of melanin-like pigments. In addition, the high nitrogen content suggested that it differed from common plant melanins classified as allomelanins, suggesting a novel eumelanin-like pigment: "BY2-melanin". This is the first example showing that eumelanin-like pigments are produced in the cultures of plant cells for which the accumulation of melanin has not been reported. This tobacco BY-2 cell culture technique may represent a customizable and sustainable alternative to conventional melanin production platforms, with significant potential for industrial and pharmacological applications.


Asunto(s)
Melaninas , Nicotiana , Línea Celular , Nicotiana/genética , Nicotiana/metabolismo
9.
Genes Dev ; 29(17): 1817-34, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26314709

RESUMEN

The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mitocondrias/enzimología , Mitocondrias/genética , Proteína de Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/enzimología , Humanos , Ratones , Proteínas Mitocondriales/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteína de Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Cell Sci ; 133(19)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32878945

RESUMEN

The receptor tyrosine kinase (RTK) pathway plays an essential role in development and disease by controlling cell proliferation and differentiation. Here, we profile the Drosophila larval brain by single-cell RNA-sequencing and identify Amalgam (Ama), which encodes a cell adhesion protein of the immunoglobulin IgLON family, as regulating the RTK pathway activity during glial cell development. Depletion of Ama reduces cell proliferation, affects glial cell type composition and disrupts the blood-brain barrier (BBB), which leads to hemocyte infiltration and neuronal death. We show that Ama depletion lowers RTK activity by upregulating Sprouty (Sty), a negative regulator of the RTK pathway. Knockdown of Ama blocks oncogenic RTK signaling activation in the Drosophila glioma model and halts malignant transformation. Finally, knockdown of a human ortholog of Ama, LSAMP, results in upregulation of SPROUTY2 in glioblastoma cell lines, suggesting that the relationship between Ama and Sty is conserved.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Animales , Encéfalo/metabolismo , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Proteínas de la Membrana/metabolismo , Neuroglía/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
11.
EMBO Rep ; 21(10): e49555, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32815271

RESUMEN

In Drosophila, the wing disc-associated muscle precursor cells give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single-cell RNA-sequencing experiments and built a cell atlas of myoblasts associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM myoblasts that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of myoblasts, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM myoblasts at various states of differentiation by immunofluorescence and genetic cell-tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Amalgam which is functionally important in muscle development. Our work provides a framework for leveraging scRNA-seq for gene discovery and details a strategy that can be applied to other scRNA-seq datasets.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desarrollo de Músculos/genética , Alas de Animales
12.
J Transl Med ; 19(1): 32, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413422

RESUMEN

BACKGROUND: Although it is becoming evident that individual's immune system has a decisive influence on SARS-CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host, and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems. RESULTS: Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, IL1A, CCL2, CXCL2, IFN, and CCR1 were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however, high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral proteins specially non-structural protein mediated overexpression of integrins such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGA8 in lungs compared to nasopharyngeal samples suggesting the possible way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP, CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury. CONCLUSIONS: Even though this study incorporates a limited number of cases, our data will provide valuable insights in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and incorporation of further data will enrich the search of an effective therapeutics.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adulto , Anciano de 80 o más Años , COVID-19/virología , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/inmunología , Citocinas/genética , Femenino , Variación Genética , Humanos , Inmunidad Innata/genética , Integrinas/genética , Pulmón/inmunología , Masculino , Persona de Mediana Edad , Modelos Inmunológicos , Mutación Missense , Nasofaringe/inmunología , Nasofaringe/virología , Pandemias , RNA-Seq , SARS-CoV-2/aislamiento & purificación , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma , Investigación Biomédica Traslacional
13.
BMC Cancer ; 21(1): 289, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736612

RESUMEN

BACKGROUND: Cervical cancer is a gynecologic cancer type that develops in the cervix, accounting for 8% mortality of all female cancer patients. Infection with specific human papillomavirus (HPV) types is considered the most severe risk factor for cervical cancer. In the context of our socioeconomic conditions, an increasing burden of this disease and high mortality rate prevail in Bangladesh. Although several researches related to the epidemiology, HPV vaccination, and treatment modalities were conducted, researches on the mutation profiles of marker genes in cervical cancer in Bangladesh remain unexplored. METHODS: In this study, five different genomic regions within the top three most frequently mutated genes (EGFR, KRAS and PIK3CA) in COSMIC database with a key role in the development of cervical cancers were selected to study the mutation frequency in Bangladeshi patients. In silico analysis was done in two steps: nucleotide sequence analysis and its corresponding amino acid analysis. RESULTS: DNA from 46 cervical cancer tissue samples were extracted and amplified by PCR, using 1 set of primers designed for EGFR and 2 sets of primers designed for two different regions of both PIK3CA and KRAS gene. In total, 39 mutations were found in 26 patient samples. Eleven different mutations (23.91%), twenty-four different mutations (52.17%) and four mutations (8.7%) were found in amplified EGFR, PIK3CA and KRAS gene fragments, respectively; among which 1 (EGFR) was common in seven patient samples and 2 (PIKCA) were found in more than 1 patient. Our study shows that except for KRAS, the frequency of observed mutations in our patients is higher than those reported earlier in other parts of the world. Most of the exonic mutations were found only in the PIK3CA and EGFR genes. CONCLUSIONS: The study can be used as a basis to build a mutation database for cervical cancer in Bangladesh with the possibility of targetable oncogenic mutations. Further explorations are needed to establish future diagnostics, personalized medicine decisions, and other pharmaceutical applications for specific cancer subtypes.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias del Cuello Uterino/genética , Adulto , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bangladesh , Biomarcadores de Tumor/antagonistas & inhibidores , Cuello del Útero/patología , Cuello del Útero/cirugía , Quimioterapia Adyuvante/métodos , Fosfatidilinositol 3-Quinasa Clase I/genética , Toma de Decisiones Clínicas , Simulación por Computador , Análisis Mutacional de ADN , Técnicas de Apoyo para la Decisión , Receptores ErbB/genética , Femenino , Humanos , Histerectomía , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapia
14.
Hum Genomics ; 14(1): 34, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993798

RESUMEN

BACKGROUND: MicroRNAs are ~ 22-nucleotide-long biological modifiers that act as the post-transcriptional modulator of gene expression. Some of them are identified to be embedded within the introns of protein-coding genes, these miRNAs are called the intronic miRNAs. Previous findings state that these intronic miRNAs are co-expressed with their host genes. This co-expression is necessary to maintain the robustness of the biological system. Till to date, only a few experiments are performed discretely to elucidate the functional relationship between few co-expressed intronic miRNAs and their associated host genes. RESULTS: In this study, we have interpreted the underlying modulatory mechanisms of intronic miRNA hsa-miR-933 on its target host gene ATF2 and found that aberration can lead to several disease conditions. A protein-protein interaction network-based approach was adopted, and functional enrichment analysis was performed to elucidate the significantly over-represented biological functions and pathways of the common targets. Our approach delineated that hsa-miR-933 might control the hyperglycemic condition and hyperinsulinism by regulating ATF2 target genes MAP4K4, PRKCE, PEA15, BDNF, PRKACB, and GNAS which can otherwise lead to the development of type II diabetes mellitus. Moreover, we showed that hsa-miR-933 can regulate a target of ATF2, brain-derived neurotrophic factor (BDNF), to modulate the optimal expression of ATF2 in neuron cells to render neuroprotection for the inhibition of neurodegenerative diseases. CONCLUSIONS: Our in silico model provides interesting resources for experimentations in a model organism or cell line for further validation. These findings may extend the common perception of gene expression analysis with new regulatory functionality.


Asunto(s)
Factor de Transcripción Activador 2/genética , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Intrones/genética , MicroARNs/genética , Enfermedades Neurodegenerativas/genética , Factor de Transcripción Activador 2/metabolismo , Línea Celular , Cromograninas/genética , Cromograninas/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
15.
J Cell Biochem ; 121(5-6): 3451-3462, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31898363

RESUMEN

Long intergenic noncoding RNAs (lincRNAs) are more than 200 bases long, transcribed from intergenic genomic regions and do not undergo translation. They have regulatory roles in differentiation and development. However, how their transcription is activated and how their expression is differentially modulated in differentiation is quite unclear. In this study, we explored and analyzed data at the transcriptomic and epigenetic level to address these questions. Here, we identified novel lincRNAs that are differentially expressed in neuronal and hematopoietic differentiation and showed that such differential modulations are achieved under epigenetic regulations. lincRNAs that are upregulated in mature cells than in progenitor are activated from a bivalent poised state where activating H3K4me3/H3K9ac/H3K27ac and suppressive H3K9me3/H3K27me3 marks are colocalized. And, lincRNAs that are downregulated in mature cells after differentiation are suppressed by the addition of H3K9me3/H3K27me3 marks. Moreover, here we show a tissue-specific expression pattern of lincRNAs in various cell lines and normal tissues. The study reveals bidirectional histone marks as an epigenetic means of directing the differential expression of lincRNAs which are found to be involved in the process of cellular differentiation.


Asunto(s)
Diferenciación Celular , Código de Histonas , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Histonas/metabolismo , Humanos , Neuronas/metabolismo , Activación Transcripcional , Transcriptoma
16.
BMC Microbiol ; 19(1): 270, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796006

RESUMEN

BACKGROUND: Due to its rapid lethal effect in the early development stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) has been causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus, carrying the pirA and pirB toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp (Peneaus monodon) of the south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. RESULTS: Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh, AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~ 69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pirA and pirB. Antibiotic resistance genes were predicted against ß-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. CONCLUSIONS: The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Hepatopáncreas/microbiología , Penaeidae/microbiología , Vibrio parahaemolyticus/genética , Enfermedad Aguda , Animales , Proteínas Bacterianas/genética , Bangladesh , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Hepatopáncreas/patología , Necrosis/microbiología , Necrosis/veterinaria , Plásmidos , ARN Ribosómico 16S/genética , Alimentos Marinos , Vibrio parahaemolyticus/patogenicidad
17.
J Med Virol ; 91(9): 1584-1594, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31095749

RESUMEN

BACKGROUND: The concurrent Zika Virus (ZIKV) outbreaks in the United States and Northeast Brazil have evoked global surveillance. Zika infection has been correlated with severe clinical symptoms, such as microcephaly, Guillain-Barré syndrome, and other congenital brain abnormalities. Recent data suggest that ZIKV predominantly targets neural progenitor cells leading to neurological impairment. Despite the clinical evidence, detailed experimental mechanism of ZIKV neurotropic pathogenesis has not been fully understood yet. Here we hypothesized that ZIKV produces miRNAs, which target essential host genes involved in various cellular pathways facilitating their survival through immune evasion and progression of disease during brain development. METHODS: From genome sequence information using several bioinformatic tools, we predicted pri-miRNAs, pre-miRNAs, and finally the mature miRNAs produced by ZIKV. We also identified their target genes and performed functional enrichment analysis to identify the biological processes associated with these genes. Finally, we analyzed a publicly available RNA-seq data set to determine the altered expression level of the targeted genes. RESULTS: From ZIKV genome sequence, we identified and validated 47 putative novel miRNAs. Functional enrichment of the targeted genes demonstrates the involvement of various biological pathways regulating cellular signaling, neurological functions, cancer, and fetal development. The expression analysis of these genes showed that ZIKV-produced miRNAs downregulate the key genes involved in these pathways, which in turn may lead to impaired brain development. CONCLUSIONS: Our finding proposes novel ZIKV miRNAs and their targets, which upon experimental validation could help developing new therapeutics to combat ZIKV infection and minimize ZIKV-mediated pathologies.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , MicroARNs/química , MicroARNs/genética , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/fisiopatología , Infección por el Virus Zika/etiología , Virus Zika/genética , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Viral , Genómica/métodos , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Interferencia de ARN , ARN Viral , Transducción de Señal , Infección por el Virus Zika/complicaciones
18.
J Sep Sci ; 42(14): 2379-2389, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31106518

RESUMEN

A multi-residue method has been developed and validated to determine 46 pesticides in spinach using liquid chromatography tandem mass spectrometry. The method is based on modified quick, easy, cheap, effective, rugged, and safe sample preparation, where high-surface-area graphitized carbon black was used first as sorbent material in the dispersive solid-phase extraction. The method was compared with the quick, easy, cheap, effective, rugged, and safe method. The morphology, surface area, pore size, and pore volume of the sorbent was determined. The results obtained show that the sorbent consists of high surface area (233 m2 /g) and large pore volume (1.5 cm3 /g). The calibration curve correlation coefficient (R2 ) of the method was at least 0.99. The average recoveries ranged from 74 to 116%, and limits of detection and quantification from 0.0001 to 0.002 mg/kg and from 0.0002 to 0.005 mg/kg, respectively. Using the method, the pesticides exhibited low matrix effect (< 20%), except for nicosulfuron (29.86%), methomyl (26.77%), and flufenoxuron (24.65%). The method showed better potential to remove pigments than the quick, easy, cheap, effective, rugged, and safe method. It is demonstrated that the proposed method could be useful alternative for sample preparation of spinach and other matrices in future.


Asunto(s)
Aminas/química , Residuos de Plaguicidas/análisis , Hollín/química , Spinacia oleracea/química , Cromatografía Líquida de Alta Presión , Tamaño de la Partícula , Extracción en Fase Sólida , Propiedades de Superficie , Espectrometría de Masas en Tándem
19.
Nucleic Acids Res ; 45(9): 5086-5099, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28158851

RESUMEN

The cyclin-dependent kinase inhibitor p27Kip1 (p27) also behaves as a transcriptional repressor. Data showing that the p300/CBP-associated factor (PCAF) acetylates p27 inducing its degradation suggested that PCAF and p27 could collaborate in the regulation of transcription. However, this possibility remained to be explored. We analyzed here the transcriptional programs regulated by PCAF and p27 in the colon cancer cell line HCT116 by chromatin immunoprecipitation sequencing (ChIP-seq). We identified 269 protein-encoding genes that contain both p27 and PCAF binding sites being the majority of these sites different for PCAF and p27. PCAF or p27 knock down revealed that both regulate the expression of these genes, PCAF as an activator and p27 as a repressor. The double knock down of PCAF and p27 strongly reduced their expression indicating that the activating role of PCAF overrides the repressive effect of p27. We also observed that the transcription factor Pax5 interacts with both p27 and PCAF and that the knock down of Pax5 induces the expression of p27/PCAF target genes indicating that it also participates in the transcriptional regulation mediated by p27/PCAF. In summary, we report here a previously unknown mechanism of transcriptional regulation mediated by p27, Pax5 and PCAF.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Regulación de la Expresión Génica , Factor de Transcripción PAX5/fisiología , Factores de Transcripción p300-CBP/fisiología , Animales , Sitios de Unión , Línea Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Ratones , Unión Proteica , Proteínas/genética , Análisis de Matrices Tisulares , Transcripción Genética
20.
Genes Dev ; 25(17): 1820-34, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21856777

RESUMEN

The E2F family of transcription factors regulates the expression of both genes associated with cell proliferation and genes that regulate cell death. The net outcome is dependent on cellular context and tissue environment. The mir-11 gene is located in the last intron of the Drosophila E2F1 homolog gene dE2f1, and its expression parallels that of dE2f1. Here, we investigated the role of miR-11 and found that miR-11 specifically modulated the proapoptotic function of its host gene, dE2f1. A mir-11 mutant was highly sensitive to dE2F1-dependent, DNA damage-induced apoptosis. Consistently, coexpression of miR-11 in transgenic animals suppressed dE2F1-induced apoptosis in multiple tissues, while exerting no effect on dE2F1-driven cell proliferation. Importantly, miR-11 repressed the expression of the proapoptotic genes reaper (rpr) and head involution defective (hid), which are directly regulated by dE2F1 upon DNA damage. In addition to rpr and hid, we identified a novel set of cell death genes that was also directly regulated by dE2F1 and miR-11. Thus, our data support a model in which the coexpression of miR-11 limits the proapoptotic function of its host gene, dE2f1, upon DNA damage by directly modulating a dE2F1-dependent apoptotic transcriptional program.


Asunto(s)
Apoptosis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Proliferación Celular , Daño del ADN/genética , Proteínas de Drosophila/genética , Células HeLa , Humanos , MicroARNs/genética , Mutación/genética , Neuropéptidos/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA