Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37766098

RESUMEN

Explaining how individual choice and government policy can appear in the same context in real society is one of the most challenging scientific problems. Controlling infectious diseases requires effective prevention and control measures, including vaccination and self-defense measures. In this context, optimal control strategies incorporating vaccination and self-defense measures have been proposed using the framework of evolutionary game theory. This approach accounts for individuals' behavior and interactions in a population. It can provide insights into the effectiveness of different strategies for controlling the spread of infectious diseases. The optimal control strategy involves balancing the costs and benefits of vaccination, considering the dynamic interplay between the infected and susceptible populations. By combining evolutionary game theory with optimal control theory, we can identify the optimal allocation of resources for vaccination and self-defense measures, which can maximize the control of infectious diseases while minimizing costs. The model is utilized to analyze public health policies diseases, such as vaccination and self-defense strategies, to mitigate the spread of infectious in the context of delayed decision-making.

2.
Infect Dis Model ; 10(1): 1-27, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39319286

RESUMEN

Disease severity through an immunized population ensconced on a physical network topology is a key technique for preventing epidemic spreading. Its influence can be quantified by adjusting the common (basic) methodology for analyzing the percolation and connectivity of contact networks. Stochastic spreading properties are difficult to express, and physical networks significantly influence them. Visualizing physical networks is crucial for studying and intervening in disease transmission. The multi-agent simulation method is useful for measuring randomness, and this study explores stochastic characteristics of epidemic transmission in various homogeneous and heterogeneous networks. This work thoroughly explores stochastic characteristics of epidemic propagation in homogeneous and heterogeneous networks through extensive theoretical analysis (positivity and boundedness of solutions, disease-free equilibrium point, basic reproduction number, endemic equilibrium point, stability analysis) and multi-agent simulation approach using the Gilespie algorithm. Results show that Ring and Lattice networks have small stochastic variations in the ultimate epidemic size, while BA-SF networks have disease transmission starting before the threshold value. The theoretical and deterministic aftermaths strongly agree with multi-agent simulations (MAS) and could shed light on various multi-dynamic spreading process applications. The study also proposes a novel concept of void nodes, Empty nodes and disease severity, which reduces the incidence of contagious diseases through immunization and topologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA