Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 13(1): 5929, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045927

RESUMEN

Ga-based liquid metals (LMs) are expected to be suitable for wiring highly deformable devices because of their high electrical conductivity and stable resistance to extreme deformation. Injection and printed wiring, and wiring using LM-polymer composites are the most popular LM wiring approaches. However, additional processing is required to package the wiring after LM patterning, branch and interrupt wiring shape, and ensure adequate conductivity, which results in unnecessary wiring shape changes and increased complexity of the wiring methods. In this study, we propose an LM-polymer composite comprising LM particles and ion gel as a flexible matrix material with low viscosity and specific gravity before curing. Moreover, the casting method is used for wire patterning, and the material is cured at room temperature to ensure that the upper insulative layer of the ion gel self-assembles simultaneously with the formation of LM wiring in the lower layer. High conductivity and low resistance change rate of the formed wiring during deformation are achieved without an activation process. This ion gel-LM bilayer wiring can be used for three-dimensional wiring by stacking. Furthermore, circuits fabricated using ion gel-LM bilayer wiring exhibit stable operation. Therefore, the proposed method can significantly promote the development of flexible electronic devices.

2.
ACS Appl Mater Interfaces ; 14(5): 7241-7251, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35084813

RESUMEN

In recent years, wiring and system construction on ultrasoft materials such as biological tissues and hydrogels have been proposed for advanced wearable devices, implantable devices, and soft robotics. Among the soft conductive materials, Ga-based liquid metals (LMs) are both biocompatible and ultrasoft, making them a good match for electrodes on the ultrasoft substrates. However, gels and tissues are softer and less wettable to the LMs than conventional soft substrates such as Ecoflex and polydimethylsiloxane. In this study, we demonstrated the transfer of LM paste composed of Ga-based LM and Ni nanoparticles onto ultrasoft substrates such as biological tissue and gels using sacrificial polyvinyl alcohol (PVA) films. The LM paste pattern fabricated on the PVA film adhered to the ultrasoft substrate along surface irregularities and was transferred without being destroyed by the PVA film before the PVA's dissolution in water. The minimum line width that could be wired was approximately 165 µm. Three-dimensional wiring, such as the helical structure on the gel fiber surface, is also possible. Application of this transfer method to tissues using LM paste wiring allowed the successful stimulation of the vagus nerve in rats. In addition, we succeeded in transferring a temperature measurement system fabricated on a PVA film onto the gel. The connection between the solid-state electrical element and the LM paste was stable and maintained the functionality of the temperature-sensing system. This fundamental study of wiring fabrication and system integration can contribute to the development of advanced electric devices based on ultrasoft substrates.


Asunto(s)
Metales/química , Alcohol Polivinílico/química , Animales , Materiales Biocompatibles/química , Electrodos Implantados , Electrónica/instrumentación , Electrónica/métodos , Galio/química , Hidrogeles/química , Masculino , Nanopartículas/química , Níquel/química , Ratas , Ratas Sprague-Dawley , Temperatura , Dispositivos Electrónicos Vestibles
3.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658197

RESUMEN

Neonatal jaundice occurs in >80% of newborns in the first week of life owing to physiological hyperbilirubinemia. Severe hyperbilirubinemia could cause brain damage owing to its neurotoxicity, a state commonly known as kernicterus. Therefore, periodic bilirubin monitoring is essential to identify infants at-risk and to initiate treatment including phototherapy. However, devices for continuous measurements of bilirubin have not been developed yet. Here, we established a wearable transcutaneous bilirubinometer that also has oxygen saturation (SpO2) and heart rate (HR) sensing functionalities. Clinical experiments with neonates demonstrated the possibility of simultaneous detection of bilirubin, SpO2, and HR. Moreover, our device could consistently measure bilirubin during phototherapy. These results demonstrate the potential for development of a combined treatment approach with an automatic link via the wearable bilirubinometer and phototherapy device for optimization of the treatment of neonatal jaundice.

4.
ACS Sens ; 6(1): 212-219, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33395271

RESUMEN

In this study, a highly transformable electrocardiograph that can considerably deform the position of stretchable electrodes based on the lead method for diagnosing heart disease was developed; these electrodes exhibited high resistance stability against considerable stretching and multiple stretching. To realize the large deformable functionality of the electrodes of a system, liquid metal electrodes and a heteroconnector composed of a liquid metal paste and carbon-based conductive rubber were employed. The developed device can achieve a 200% strain with only 6% resistance change and a high stability of resistances after the 100-time stretching test. In addition, the study demonstrated electrocardiograms in different lead methods of adult and child using the same device. The proposed combination of large deformable electrodes with high electric stability and a robust heteroconnector is an important technology, and it presents a considerable advancement in the application of stretchable electronic systems.


Asunto(s)
Electrónica , Metales , Niño , Conductividad Eléctrica , Electrocardiografía , Electrodos , Humanos
5.
Sci Rep ; 10(1): 12666, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728079

RESUMEN

Stretchable physical sensors are crucial for the development of advanced electrical systems, particularly wearable devices and soft robotics. Currently available stretchable sensors that detect both pressure and strain are based on piezoelectric, piezoresistive, or piezocapacitive effects. The range of pressure sensing is 1-800 kPa with large deformations being within the range of deformations of parts of the human body, such as elbows and knees. However, these devices cannot easily allow simultaneous and independent detection of pressure and strain with sensor arrays at large tensions (> 50%) because strain affects the pressure signal. In this study, we propose a monolithic silicone-based array of pressure and strain sensors that can simultaneously and independently detect the in-plane biaxial tensile deformation and pressure. To realize these functionalities, the deformation of the device structure was optimized using a hetero-silicone substrate made of two types of silicone with different hardness characteristics and porous silicone bodies. In addition, the resistances of the sensors were controlled by adjusting a mixture based on carbon nanoparticles to improve the sensitivity and independence between the pressure and strain sensors. These concepts demonstrate the potential of this approach and its compatibility with the current architectures of stretchable physical sensors.

6.
J Environ Radioact ; 192: 580-586, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29724459

RESUMEN

We examined the vertical 134Cs and 137Cs concentration profiles in the southwestern Okhotsk Sea in 2011, 2013, and 2017. In June 2011, atmospheric deposition-derived 134Cs from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) was detected at depths of 0-200 m (0.06-0.6 mBq/L). In July 2013, 134Cs detected at depths of 100-200 m (∼0.05 mBq/L) was ascribed to the transport of low-level 134Cs-contaminated water and/or the convection of radioactive depositions (<0.03 mBq/L at depths of 0-50 m). In July 2017, 134Cs was detected in water samples at depths above 300 m (0.03-0.05 mBq/L), and the inventory, decay-corrected to the FDNPP accident date, exhibited its maximum value (85 Bq/m2) during this period. Combining temperature-salinity data with the concentrations of global fallout-derived 137Cs led to a plausible explanation for this observation, which is a consequence of re-entry of FDNPP-derived radiocesium through the Kuril Strait from the northwestern North Pacific Ocean to the Okhotsk Sea and subsequent mixing with the south Okhotsk subsurface layer until 2017.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Plantas de Energía Nuclear , Monitoreo de Radiación , Contaminantes Radiactivos del Agua/análisis , Japón , Océano Pacífico , Agua de Mar/química
7.
J Theor Biol ; 226(1): 79-87, 2004 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-14637057

RESUMEN

Evolutionary branching, which is a coevolutionary phenomenon of the development of two or more distinctive traits from a single trait in a population, is the issue of recent studies on adaptive dynamics. In previous studies, it was revealed that trait variance is a minimum requirement for evolutionary branching, and that it does not play an important role in the formation of an evolutionary pattern of branching. Here we demonstrate that the trait evolution exhibits various evolutionary branching paths starting from an identical initial trait to different evolutional terminus traits as determined by only changing the assumption of trait variance. The key feature of this phenomenon is the topological configuration of equilibria and the initial point in the manifold of dimorphism from which dimorphic branches develop. This suggests that the existing monomorphic or polymorphic set in a population is not an unique inevitable consequence of an identical initial phenotype.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Fenotipo , Carácter Cuantitativo Heredable , Animales , Canibalismo , Teoría del Juego
8.
J Theor Biol ; 226(3): 293-302, 2004 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-14643643

RESUMEN

A rational explanation for cannibalism is that it would be favored under conditions of crowding of conspecific individuals and/or low availability of alternative prey with the fear of starvation, so as to maximize individual fitness. Cannibalism has, however, not evolved and is not maintained by a simple individual optimization, while it has evolved and is maintained as a game among population members. We analysed the attainable state of an evolutionary cannibalism game within a framework that reflects the minimum essence of cause-effect in the cannibalism phenomenon. Cannibalism is predator-prey interaction among conspecifics. Immediate direct payoffs (survival in the interaction among conspecifics) and indirect payoffs (growth results in potential productivity and survival against the threat of starvation) would be included. No morphological specialization and no size priority of cannibalism individuals are assumed as conservative situations in which we analyse the possibility of cannibalism. Cannibalism would be possible under the conservative condition, if initially the wild population's cannibalism rate is not sufficiently lower than a threshold value. Crowding and/or low availability of alternative prey with the fear of starvation facilitates cannibalism evolution. Energy gain from conspecific prey would be attenuated by costs of counterattacks by conspecific victims and by challenge cost of its own. Discounting net intake energy required in the arms race for cannibalism challenge result in a relative disadvantage of having a high cannibalism rate and makes an evolutionary equilibrium of low cannibalism rate, even when potential profitability of conspecific prey is high.


Asunto(s)
Evolución Biológica , Canibalismo , Modelos Biológicos , Animales , Ingestión de Energía/fisiología , Teoría del Juego , Conducta Predatoria , Inanición , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA