Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982242

RESUMEN

Polymers based on renewable monomers are projected to have a significant role in the sustainable economy, even in the near future. Undoubtedly, the cationically polymerizable ß-pinene, available in considerable quantities, is one of the most promising bio-based monomers for such purposes. In the course of our systematic investigations related to the catalytic activity of TiCl4 on the cationic polymerization of this natural olefin, it was found that the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4/N,N,N',N'-tetramethylethylenediamine (TMEDA) initiating system induced efficient polymerization in dichloromethane (DCM)/hexane (Hx) mixture at both -78 °C and room temperature. At -78 °C, 100% monomer conversion was observed within 40 min, resulting in poly(ß-pinene) with relatively high Mn (5500 g/mol). The molecular weight distributions (MWD) were uniformly shifted towards higher molecular weights (MW) in these polymerizations as long as monomer was present in the reaction mixture. However, chain-chain coupling took place after reaching 100% conversion, i.e., under monomer-starved conditions, resulting in considerable molecular weight increase and MWD broadening at -78 °C. At room temperature, the polymerization rate was lower, but chain coupling did not occur. The addition of a second feed of monomer in the polymerization system led to increasing conversion and polymers with higher MWs at both temperatures. 1H NMR spectra of the formed polymers indicated high in-chain double-bond contents. To overcome the polarity decrease by raising the temperature, polymerizations were also carried out in pure DCM at room temperature and at -20 °C. In both cases, rapid polymerization occurred with nearly quantitative yields, leading to poly(ß-pinene)s with Mns in the range of 2000 g/mol. Strikingly, polymerization by TiCl4 alone, i.e., without any additive, also occurred with near complete conversion at room temperature within a few minutes, attributed to initiation by adventitious protic impurities. These results convincingly prove that highly efficient carbocationic polymerization of the renewable ß-pinene can be accomplished with TiCl4 as catalyst under both cryogenic conditions, applied widely for carbocationic polymerizations, and the environmentally benign, energy-saving room temperature, i.e., without any additive and cooling or heating. These findings enable TiCl4-catalyzed eco-friendly manufacturing of poly(ß-pinene)s, which can be utilized in various applications, and in addition, subsequent derivatizations could result in a range of high-added-value products.


Asunto(s)
Alquenos , Polímeros , Temperatura , Polimerizacion , Polímeros/química , Catálisis
2.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614111

RESUMEN

A tremendous number of solvents, either as liquids or vapors, contaminate the environment on a daily basis worldwide. Olefin metathesis, which has been widely used as high-yielding protocols for ring-opening metathesis polymerization (ROMP), ring-closing metathesis (RCM), and isomerization reactions, is typically performed in toxic and volatile solvents such as dichloromethane. In this study, the results of our systematic experiments with the Grubbs G1, G2, and Hoveyda-Grubbs HG2 catalysts proved that benzotrifluoride (BTF) can replace dichloromethane (DCM) in these reactions, providing high yields and similar or even higher reaction rates in certain cases. The ROMP of norbornene resulted not only in high yields but also in polynorbornenes with a high molecular weight at low catalyst loadings. Ring-closing metathesis (RCM) experiments proved that, with the exception of the G1 catalyst, RCM occurs with similar high efficiencies in BTF as in DCM. It was found that isomerization of (Z)-but-2-ene-1,4-diyl diacetate with the G2 and HG2 catalysts proceeds at significantly higher initial rates in BTF than in DCM, leading to rapid isomerization with high yields in a short time. Overall, BTF is a suitable solvent for olefin metathesis, such as polymer syntheses by ROMP and the ring-closing and isomerization reactions.


Asunto(s)
Alquenos , Cloruro de Metileno , Polimerizacion , Fluorobencenos
3.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555604

RESUMEN

Novel poly(dithiophosphate)s (PDTPs) were successfully synthesized under mild conditions without any additive in the presence of THF or toluene diluents at 60 °C by a direct, catalyst-free reaction between the abundant phosphorus pentasulfide (P4S10) and glycols such as ethylene glycol (EG), 1,6-hexanediol (HD) and poly(ethylene glycol) (PEG). GPC, FTIR, 1H and 31P NMR analyses proved the formation of macromolecules with dithiophosphate coupling groups having P=S and P-SH pendant functionalities. Surprisingly, the ring-opening of THF by the P-SH group and its pendant incorporation as a branching point occur during polymerization. This process is absent with toluene, providing conditions to obtain linear chains. 31P NMR measurements indicate long-time partial hydrolysis and esterification, resulting in the formation of a thiophosphoric acid moiety and branching points. Copolymerization, i.e., using mixtures of EG or HD with PEG, results in polymers with broadly varying viscoelastic properties. TGA shows the lower thermal stability of PDTPs than that of PEG due to the relatively low thermal stability of the P-O-C moieties. The low Tgs of these polymers, from -4 to -50 °C, and a lack of PEG crystallites were found by DSC. This polymerization process and the resulting novel PDTPs enable various new routes for polymer synthesis and application possibilities.


Asunto(s)
Fósforo , Polímeros , Polímeros/química , Polietilenglicoles/química , Azufre
4.
Soft Matter ; 16(24): 5759-5769, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32530018

RESUMEN

Numerous peptide-drug conjugates have been developed over the years to enhance the specificity and selectivity of chemotherapeutic agents for tumour cells. In our present work, epidermal growth factor receptor targeting drug-peptide conjugates were prepared using GE11 and D4 peptides. To ensure the drug release, the cathepsin B labile GFLG spacer was incorporated between the targeting peptide and the drug molecule (daunomycin), which significantly increased the hydrophobicity and thereby decreased the water solubility of the conjugates. To overcome the solubility problem, drug-peptide-polymer conjugates with systematic structural variations were prepared, by linking poly(ethylene glycol) (PEG) or a well-defined amino-monofunctional hyperbranched polyglycerol (HbPG) directly or via a pentaglycine spacer to the targeting peptides. All the drug-peptide-polymer conjugates were water-soluble as confirmed by turbidimetric measurements. The results of the in vitro cell viability and cellular uptake measurements on HT-29 human colon adenocarcinoma cells proved that the HbPG and the PEG highly influenced the biological activity. The conjugation of the hydrophilic polymer resulted in the amphiphilic character of the conjugates, which led to self-aggregation and nanoparticle formation that decreased the cellular uptake above a specific aggregation concentration. On the other hand, the hydrodynamic volume and the different polymer chain topology of the linear PEG and the compact hyperbranched HbPG also played an important role in the biological activity. Therefore, in similar systems, the investigation of the colloidal properties is inevitable for the better understanding of the biological activity, which can reveal the structure-activity relationship of amphiphilic drug-peptide-polymer conjugates for efficient tumour targeting.


Asunto(s)
Antibióticos Antineoplásicos , Daunorrubicina , Glicerol , Oligopéptidos , Péptidos , Polietilenglicoles , Polímeros , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daunorrubicina/química , Daunorrubicina/farmacología , Receptores ErbB , Glicerol/química , Glicerol/farmacología , Humanos , Oligopéptidos/química , Oligopéptidos/farmacología , Péptidos/química , Péptidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polímeros/química , Polímeros/farmacología
5.
Macromol Rapid Commun ; 38(6)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28166372

RESUMEN

Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate), P(NIPAAm-co-TMSPMA), copolymers with relatively high TMSPMA contents without insoluble fraction are successfully synthesized. Subsequent sol-gel reactions in both the absence and presence of tetraethyl orthosilicate lead to gels with high gel fractions. The resulting gels undergo gel collapse at 28.6-28.7 °C, i.e., below that of poly(N-isopropylacrylamide) homopolymer of 34.3 °C. Unexpectedly, the theophylline-loaded hybrid gels release the drug not only below but also above the gel collapse temperature (GCT) with considerable rates and released amounts of drug. Surprisingly, evaluation of the sustained release profiles by the Korsmeyer-Peppas equation indicates that the release occurs by Fickian diffusion above GCT, which can be attributed to the lack of significant drug-polymer interaction at such temperatures. These results can be widely applied for the design and utilization of TMSPMA-based sol-gel polymer hybrids with desired release profiles of solutes below and above GCT for a variety of applications.


Asunto(s)
Resinas Acrílicas/química , Liberación de Fármacos , Hidrogeles/química , Temperatura , Resinas Acrílicas/síntesis química , Estructura Molecular
6.
Macromol Rapid Commun ; 36(2): 238-48, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25353143

RESUMEN

Systematic investigations are carried out on the synthesis of a series of new, unique ABA-type triblock copolymers consisting of the hydrophobic and chemically inert polyisobutylene (PIB) inner and the hydrophilic comb-shaped poly(poly(ethylene glycol) methacrylate) (PPEGMA) polymacromonomer as an outer block. Telechelic PIB macroinitiators with narrow molecular weight distributions (MWD) are synthesized by quasiliving carbocationic polymerization of isobutylene with a bifunctional initiator followed by quantitative chain end derivatizations. Atom transfer radical polymerization (ATRP) of PEGMAs with various molecular weights is investigated by using these macroinitiators. It is found that CuBr is an inefficient ATRP catalyst, while CuCl leads to high, nearly complete conversions of the PEGMA macromonomers. Gel permeation chromatography (GPC) analyses reveal slow initiation of PEGMA at relatively high PIB/PEGMA ratios or with PEGMAs of higher molecular weights due to steric hindrance between the macroinitiator and macromonomer. The occurrence of slow initiation, and not permanent termination, is proven by highly efficient ATRP of a low-molecular-weight monomer, methyl methacrylate, with the block copolymers as macroinitiators. Successful synthesis of PPEGMA-PIB-PPEGMA ABA block copolymers is obtained by using either low-molecular-weight PEGMA or relatively low macroinitiator/macromonomer ratios. Differential scanning calorimetry (DSC) indicates phase separation and significant suppression of the crystallinity of the pendant poly(ethylene glycol) (PEG) chains in these new block copolymers.


Asunto(s)
Metacrilatos/química , Polienos/química , Polietilenglicoles/química , Polimerizacion , Polímeros/química , Rastreo Diferencial de Calorimetría , Catálisis , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estructura Molecular , Polímeros/síntesis química , Temperatura , Termodinámica
7.
Polymers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806995

RESUMEN

Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.

8.
Materials (Basel) ; 13(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126719

RESUMEN

The glass transition temperature (Tg) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between Tg and the average molecular weight between crosslinking points (Mc), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two Tgs were found for the conetworks by DSC. Fox-Flory type dependence between Tg and Mc of the PMMA component (Tg = Tg,∞ - K/Mc) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between Tg and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the Tg of PMMA depend exclusively on the Mc in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.

9.
Polymers (Basel) ; 12(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126434

RESUMEN

Endfunctional polymers possess significant industrial and scientific importance. Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer, with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study. PIB-OHs derived from commercial exo-olefin-ended PIB (PIBexo-OH) and allyl-terminated polymer made via quasiliving carbocationic polymerization of isobutylene (PIBall-OH) were tosylated and nosylated in the presence of 4-dimethylaminopyridine (DMAP), pyridine and 1-methylimidazole (1-MI) catalysts and triethylamine (TEA). Our systematic investigations revealed that the end product distribution strongly depends on the relative amount of the components, especially that of TEA. While PIBexo-OTs with quantitative endfunctionality is readily formed from PIBexo-OH, its nosylation is not as straightforward. During sulfonylation of PIBall-OH, the formed tosyl and nosyl endgroups are easily substituted with chloride ions, formed in the first step of sulfonylation, leading to chloride termini. We found that decreased amounts of TEA afford the synthesis of PIBall-OTs and PIBall-ONs with higher than 90% endfunctionalities. These sulfonyl-ended PIBs open new ways for utilizing PIB in various fields and in the synthesis of novel PIB-containing macromolecular architectures.

10.
Polymers (Basel) ; 12(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036354

RESUMEN

Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs). A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS and AFM, and PIL-CNs with 15-20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide) PIL nanophases with average domain sizes of 8.2-8.4 nm are formed. Unexpectedly, while the swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF, NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol. An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be utilized in various application fields.

11.
Nanomaterials (Basel) ; 8(10)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274317

RESUMEN

For biomedical applications, superparamagnetic nanoparticles (MNPs) have to be coated with a stealth layer that provides colloidal stability in biological media, long enough persistence and circulation times for reaching the expected medical aims, and anchor sites for further attachment of bioactive agents. One of such stealth molecules designed and synthesized by us, poly(polyethylene glycol methacrylate-co-acrylic acid) referred to as P(PEGMA-AA), was demonstrated to make MNPs reasonably resistant to cell internalization, and be an excellent candidate for magnetic hyperthermia treatments in addition to possessing the necessary colloidal stability under physiological conditions (Illés et al. J. Magn. Magn. Mater. 2018, 451, 710⁻720). In the present work, we elaborated on the molecular background of the formation of the P(PEGMA-AA)-coated MNPs, and of their remarkable colloidal stability and salt tolerance by using potentiometric acid⁻base titration, adsorption isotherm determination, infrared spectroscopy (FT-IR ATR), dynamic light scattering, and electrokinetic potential determination methods. The P(PEGMA-AA)@MNPs have excellent blood compatibility as demonstrated in blood sedimentation, smears, and white blood cell viability experiments. In addition, blood serum proteins formed a protein corona, protecting the particles against aggregation (found in dynamic light scattering and electrokinetic potential measurements). Our novel particles also proved to be promising candidates for MRI diagnosis, exhibiting one of the highest values of r2 relaxivity (451 mM-1s-1) found in literature.

12.
J Am Soc Mass Spectrom ; 27(3): 432-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26620530

RESUMEN

Polyisobutylenes (PIBs) with different end-groups including chlorine, exo-olefin, hydroxyl, and methyl prepared from aliphatic and aromatic initiators were studied by electrospray ionization mass spectrometry (ESI-MS). Independently of the end-groups, presence or absence of aromatic initiator moiety, these PIB derivatives were capable of forming adduct ions with NO3 (-) and Cl(-) ions, thus allowing the direct characterization of these compounds in the negative ion mode of ESI-MS. To obtain [PIB + NO3](-) and [PIB + Cl](-) adduct ions with appreciable intensities, addition of polar solvents such as acetone, 2-propanol, or ethanol to the dichloromethane solution of PIBs was necessary. Furthermore, increasing both the polarity (by increasing the acetone content) and the ion-source temperature give rise to enhanced intensities for both [PIB + NO3](-) and [PIB + Cl](-) ions. Energy-dependent collision induced dissociation studies (CID) revealed that increasing the collision voltages resulted in the shift of the apparent molecular masses to higher ones. CID studies also showed that dissociation of the [PIB + Cl](-) ions requires higher collision energy than that of [PIB + NO3](-). In addition, Density Functional Theory calculations were performed to gain insights into the nature of the interactions between the highly non-polar PIB chains and anions NO3 (-) and Cl(-) as well as to determine the zero-point corrected electronic energies for the formation of [PIB + NO3](-) and [PIB + Cl](-) adduct ions.

13.
Artículo en Inglés | MEDLINE | ID: mdl-26057605

RESUMEN

Migration of Tinuvin P (UV stabiliser) and Irganox 3114 (antioxidant) from high-density polyethylene (HDPE) was studied. HDPE pieces were soaked in either milk (1.5% or 3.5% fat content) or 50% (v/v) ethanol-water mixture - the food simulant for milk as specified in Regulation No. 10/2011/EC. The obtained extracts were analysed by LC-MS/MS. For statistical assessment variography was used. It proved to be a useful tool for making a distinction between the early migration range and the equilibrium, despite the variance of the data. Regulation No. 10/2011/EC specifies 10 days of contact time for milk at 5°C. Our experiments with the food simulant with 24 dm(2) kg(-1) surface/mass ratio showed that both Tinuvin P and Irganox 3114 need less than 1 h to reach equilibrium. Furthermore, 10-day experiments with daily sampling showed that these additives are stable in milk, as well as in the food simulant. The effect of the concentration of the additives in HDPE was studied in the 0.01-5% (m/m) range. For both Tinuvin P and Irganox 3114 and all three extractants the migrated amount became independent of the concentration of the additive in the HDPE approximately at 1% (m/m). For Tinuvin P the food simulant gave a close estimate for the milk samples. However, using the food simulant for modelling the migration of Irganox 3114 into milk gave an overestimation with a factor of minimum 3.5. In the case of Tinuvin P special care must be taken, since the recommended amount in the HDPE can result in additive concentrations near or even over the specific migration limit (SML). However, Irganox 3114 cannot reach the SML either in milk or in the food simulant.


Asunto(s)
Hidroxitolueno Butilado/análogos & derivados , Contaminación de Alimentos/análisis , Embalaje de Alimentos/instrumentación , Leche/química , Triazoles/análisis , Animales , Hidroxitolueno Butilado/análisis , Cromatografía Líquida de Alta Presión , Polietileno/química , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
14.
J Am Soc Mass Spectrom ; 20(12): 2342-51, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19819723

RESUMEN

Nine polyisobutylene (PIB) derivatives with different end groups (chlorine, vinyl, isobutenyl, 2,2-diphenylvinyl, and carboxyl) and molecular weights (1000 to 4500 g/mol), initiated by monofunctional and aromatic bifunctional initiators were studied by atmospheric pressure photoionization mass spectrometry (APPI-MS) in both negative and positive ion modes. Consistent with previous findings, negative ion APPI-MS revealed end-group identities through the formation of PIB adducts with chloride ions formed in situ from a chlorinated solvent (e.g., CCl4) in the presence of a dopant (toluene). In positive ion mode, considerable fragmentation of these PIB derivatives was observed, rendering end-group determinations very difficult. The M(n) values obtained by APPI(-)-MS were considerably lower than those determined by SEC for PIB derivatives with M(n) higher than 2000 g/mol. PIBs containing carboxyl termini can undergo collision-induced dissociation, yielding structurally important product ions. The resulting APPI-MS/MS intensities were found to reflect the "arm-length" distribution for PIBs with bifunctional aromatic moieties. In positive ion mode, [M + COCl]+ adducts were observed for PIBs with an aromatic initiator moiety. The origin of the COCl+ species is also discussed.

15.
Langmuir ; 23(21): 10746-55, 2007 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17824623

RESUMEN

Seven amphiphilic conetworks of methacrylic acid (MAA) and a new hydrophobic monomer, 2-butyl-1-octyl-methacrylate (BOMA), were synthesized using group transfer polymerization. The MAA units were introduced via the polymerization of tetrahydropyranyl methacrylate (THPMA) followed by the removal of the protecting tetrahydropyranyl group by acid hydrolysis after network formation. Both THPMA and BOMA were in-house synthesized. Ethylene glycol dimethacrylate (EGDMA) was used as the cross-linker. Six of the conetworks were model conetworks, containing copolymer chains between cross-links of precise molecular weight and composition. The prepared conetwork series covered a wide range of compositions and architectures. In particular, the MAA content was varied from 67 to 94 mol %, and three different conetwork architectures were constructed: ABA triblock copolymer-based, statistical copolymer-based, and randomly cross-linked. The linear conetwork precursors were analyzed by gel permeation chromatography and 1H NMR spectroscopy in terms of their molecular weight and composition, both of which were found to be close to the theoretically calculated values. The degrees of swelling (DS) of all the amphiphilic conetworks were measured in water and in THF over the whole range of ionization of the MAA units. The DSs in water increased with the degree of ionization (DI) and the content of the hydrophilic MAA units in the conetwork, while the DSs in THF increased with the degree of polymerization of the chains between the cross-links and by reducing the DI of the MAA units. Finally, the nanophase behavior of the conetworks was probed using small-angle neutron scattering and atomic force microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA