Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(2): 330-333, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194561

RESUMEN

A quantum-dot microdisk was optically pumped by continuous-wave excitation with a level sufficient for the ground-state lasing. The microdisk was additionally illuminated with sub-ps pulses of various powers. It was found that there is a critical level of pulse power that determines the subsequent transient process of the microlaser. Depending on the level of the pulsed excitation, the ground-state lasing intensity can be either enhanced (for weak pulses) or fully quenched (for strong pulses). In the latter case, the excited-state lasing is ignited for a short time. All dynamic phenomena occur on a time scale of the order of 100 ps, and the duration of the transient process as a whole (from the arrival of the excitation pulse to the restoration of steady-state intensities) lasts no more than 0.5 ns. Using this phenomenon, a microlaser can be rapidly switched between two states with the switching controlled by the level of the incoming optical pulse.

2.
Cell Mol Life Sci ; 80(8): 197, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37407839

RESUMEN

Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias/genética , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica
3.
J Am Chem Soc ; 145(50): 27576-27586, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38054954

RESUMEN

Dissolution dynamic nuclear polarization (dDNP) is a method of choice for preparing hyperpolarized 13C metabolites such as 1-13C-pyruvate used for in vivo applications, including the real-time monitoring of cancer cell metabolism in human patients. The approach consists of transferring the high polarization of electron spins to nuclear spins via microwave irradiation at low temperatures (1.0-1.5 K) and moderate magnetic fields (3.3-7 T). The solid sample is then dissolved and transferred to an NMR spectrometer or MRI scanner for detection in the liquid state. Common dDNP protocols use direct hyperpolarization of 13C spins reaching polarizations of >50% in ∼1-2 h. Alternatively, 1H spins are polarized before transferring their polarization to 13C spins using cross-polarization, reaching polarization levels similar to those of direct DNP in only ∼20 min. However, it relies on more complex instrumentation, requiring highly skilled personnel. Here, we explore an alternative route using 1H dDNP followed by inline adiabatic magnetic field inversion in the liquid state during the transfer. 1H polarizations of >70% in the solid state are obtained in ∼5-10 min. As the hyperpolarized sample travels from the dDNP polarizer to the NMR spectrometer, it goes through a field inversion chamber, which causes the 1H → 13C polarization transfer. This transfer is made possible by the J-coupling between the heteronuclei, which mixes the Zeeman states at zero-field and causes an antilevel crossing. We report liquid-state 13C polarization up to ∼17% for 3-13C-pyruvate and 13C-formate. The instrumentation needed to perform this experiment in addition to a conventional dDNP polarizer is simple and readily assembled.

4.
Anal Chem ; 95(48): 17818-17825, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37993972

RESUMEN

Long-read sequencing technologies require high-molecular-weight (HMW) DNA of sufficient purity and integrity, which can be difficult to obtain from complex biological samples. We propose a method for purifying HMW DNA that takes advantage of the fact that DNA's electrophoretic mobility decreases in a high-ionic-strength environment. The method begins with the separation of HMW DNA from various impurities by electrophoresis in an agarose gel-filled channel. After sufficient separation, a high-salt gel block is placed ahead of the DNA band of interest, leaving a gap between the separating gel and the high-salt gel that serves as a reservoir for sample collection. The DNA is then electroeluted from the separating gel into the reservoir, where its migration slows due to electrostatic shielding of the DNA's negative charge by excess counterions from the high-salt gel. As a result, the reservoir accumulates HMW DNA of high purity and integrity, which can be easily collected and used for long-read sequencing and other demanding applications without additional desalting. The method is simple and inexpensive, yields sequencing-grade HMW DNA even from difficult plant and soil samples, and has the potential for automation and scalability.


Asunto(s)
ADN , Cloruro de Sodio , Electroforesis en Gel de Agar/métodos , ADN/análisis , Peso Molecular
5.
Opt Lett ; 48(13): 3515-3518, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390169

RESUMEN

The peculiarities of two-state lasing in a racetrack microlaser with an InAs/GaAs quantum dot active region are investigated by measuring the electroluminescence spectra at various injection currents and temperatures. Unlike edge-emitting and microdisk lasers, where two-state lasing involves the ground and first excited-state optical transitions of quantum dots, in racetrack microlasers, we observe lasing through the ground and second excited states. As a result, the spectral separation between lasing bands is doubled to more than 150 nm. A temperature dependence of threshold currents for lasing via ground and second excited states of quantum dots was also obtained.


Asunto(s)
Puntos Cuánticos , Temperatura
6.
J Org Chem ; 88(15): 11003-11009, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462945

RESUMEN

A method for the synthesis of both symmetric and asymmetric fused spiro[4.4]-nonane-dione derivatives has been developed. It is based on a Diels-Alder reaction of spiro[4.4]nona-2,7-diene-1,6-dione as a dienophile component followed by immediate aromatization of the adduct. An active diene component can be generated using the tetrabromoxylene/NaI system, the 1,3-diphenylisobenzofuran/BF3 system, or substituted cyclones.

7.
Biochemistry (Mosc) ; 88(7): 1034-1044, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37751872

RESUMEN

Cysteine cathepsins play an important role in tumor development and metastasis. The expression of these enzymes is often increased in many types of tumor cells. Cysteine cathepsins contribute to carcinogenesis through a number of mechanisms, including proteolysis of extracellular matrix and signaling molecules on the cell surface, as well as degradation of transcription factors and disruption of signaling cascades in the cell nucleus. Distinct oncogenic functions have been reported for several members of the cysteine cathepsin family in various types of cancer, but a comparative study of all eleven cysteine cathepsins in one experimental model is still missing. In this work, we assessed and compared the expression, localization, and maturation of all eleven cysteine cathepsins in embryonic kidney cells HEK293 and kidney cancer cell lines 769-P and A-498. We found that the expression of cathepsins V, B, Z, L, and S was 3- to 9-fold higher in kidney tumor cells than in embryonic cells. We also showed that all cysteine cathepsins were present in varying amounts in the nucleus of both embryonic and tumor cells. Notably, more than half of the cathepsin Z or K and over 88% of cathepsin F were localized in tumor cell nuclei. Moreover, mature forms of cysteine cathepsins were more prevalent in tumor cells than in embryonic cells. These results can be further used to develop novel diagnostic tools and may assist in the investigation of cysteine cathepsins as potential therapeutic targets.

8.
Molecules ; 28(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36770832

RESUMEN

Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection. Herein, detailed experimental data are reported on the biocompatibility towards hMSc of heavily gadolinium-doped cerium oxide nanoparticles (Ce0.8Gd0.2O2-x) synthesised using two synthetic protocols. The relaxivity of the nanoparticles was measured in a magnetic field range from 1 mT to 16.4 T. The relaxivity values (r1 = 11 ± 1.2 mM-1 s-1 and r1 = 7 ± 1.2 mM-1 s-1 in magnetic fields typical of 1.5 and 3 T MRI scanners, respectively) are considerably higher than those of the commercial Omniscan MRI contrast agent. The low toxicity of gadolinium-doped ceria nanoparticles to hMSc enables their use as an effective theranostic tool with improved MRI-contrasting properties.


Asunto(s)
Gadolinio , Nanopartículas , Humanos , Nanopartículas/uso terapéutico , Células Madre , Medios de Contraste , Imagen por Resonancia Magnética/métodos
9.
J Headache Pain ; 24(1): 38, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37038131

RESUMEN

BACKGROUND: Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS: Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS: The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS: In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.


Asunto(s)
Endocannabinoides , Trastornos Migrañosos , Ratas , Humanos , Animales , Anciano , Endocannabinoides/farmacología , Monoglicéridos/uso terapéutico , Cromatografía Liquida , Nocicepción , Carbamatos/farmacología , Carbamatos/uso terapéutico , Ratas Wistar , Espectrometría de Masas en Tándem , Dolor/tratamiento farmacológico , Amidohidrolasas/metabolismo , Amidohidrolasas/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Monoacilglicerol Lipasas/metabolismo
10.
J Org Chem ; 87(5): 2456-2469, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166542

RESUMEN

Conventional spiro-linked conjugated materials are attractive for organic optoelectronic applications due to the unique combination of their optical and electronic properties. However, spiro-linked conjugated materials with conjugation extension directed along the main axis of the molecule are still only rare examples among the vast number of spiro-linked conjugated materials. Herein, the synthesis, leading to π-extended spiro-linked conjugated materials─spiro[4.4]nonane-1,6-diones and spiro[5.5]undecane-1,7-diones─has been developed and optimized. The proposed design concept starts from readily available malonic esters and contains several steps: double alkylation of malonic ester with bromomethylaryl(hetaryl)s; conversion of a malonic ester into the corresponding malonic acid; electrophilic spirocyclization of the latter into the annulated spiro[4.4]nonane-1,6-dione or spiro[5.5]undecane-1,7-dione in the presence of phosphorus pentoxide. On the basis of these insights, the developed method yielded spiro-linked conjugated cores fused with benzene, thiophene, and naphthalene, decorated with active halogen atoms. The structures of the synthesized spirocycles were determined by single-crystal X-ray diffraction analysis. Benzene fused spiro[4.4]nonane-1,6-dione decorated with bromine atoms was transformed into V-shape phenylene-thiophene co-oligomer type spirodimers via Stille coupling. The spiro-bis(4-n-dodecylphenyl)-2,2'-bithiophene derivative possessed high photoluminescence properties in both solution and solid state with a photoluminescence quantum yield (PL QY) of 38%.

11.
Appl Magn Reson ; 53(3-5): 521-537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33840910

RESUMEN

Photo-CIDNP (photo-chemically induced dynamic nuclear polarization) refers to nuclear polarization created by the spin-chemical evolution of spin-correlated radical pairs (SCRPs). This phenomenon occurs in gases, liquids and solids. Based on the solid-state photo-CIDNP effect observed under magic-angle spinning (MAS), photo-CIDNP MAS NMR has been developed as analytical method. Here we report the origin, the theory and the state of the art of this method.

12.
Chemphyschem ; 22(14): 1470-1477, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34009704

RESUMEN

Signal Amplification By Reversible Exchange (SABRE) is gaining increased attention as a tool to enhance weak Nuclear Magnetic Resonance (NMR) signals. In SABRE, spin order is transferred from parahydrogen (H2 in its nuclear singlet spin state) to a substrate molecule in a transient Ir-based complex. In recent years, SABRE polarization of biologically active substrates has been demonstrated, notably of metronidazole - an antibiotic and antiprotozoal drug. In this work, we study 15 N SABRE polarization of metronidazole at natural isotope abundance. We are able to demonstrate significant 15 N polarization reaching 15 %, which corresponds to a signal enhancement of 46,000 at 9.4 T for the nitrogen atom with lone electron pair. Additionally, the other two N-atoms can be polarized, although less efficiently. We present a detailed study of the field dependence of polarization and explain the maxima in the field dependence using the concept of coherent polarization transfer at level anti-crossings in the SABRE complex. A study of spin relaxation phenomena presented here enables optimization of the magnetic field for efficient storage of non-thermal polarization.

13.
Chemphyschem ; 22(14): 1527-1534, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33932314

RESUMEN

The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15 N2 -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suitable magnetic fields. Enhancement factors (relative to 9.4 T) reach up to 3000 for 15 N spins and up to 30 for the 1 H spins. We compare two approaches to observe either hyperpolarized magnetization of 15 N/1 H spins, or hyperpolarized singlet order of the 15 N spin pair. The results presented here will be useful for further experiments in which hyperpolarized cis-15 N2 -azobenzene is switched by light to trans-15 N2 -azobenzene for storing the produced hyperpolarization in the long-lived spin state of the 15 N pair of trans-15 N2 -azobenzene.

14.
Phys Chem Chem Phys ; 23(16): 9715-9720, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33861279

RESUMEN

A novel method dubbed ZULF-TOCSY results from the combination of Zero and Ultra-Low Field (ZULF) with high-field, high-resolution NMR, leading to a generalization of the concept of total correlation spectroscopy (TOCSY). ZULF-TOCSY is a new building block for NMR methods, which has the unique property that the polarization is evenly distributed among all NMR-active nuclei such as 1H, 13C, 15N, 31P, etc., provided that they belong to the same coupling network, and provided that their relaxation is not too fast at low fields, as may occur in macromolecules. Here, we show that ZULF-TOCSY correlations can be observed for peptides at natural isotopic abundance, such as the protected hexapeptide Boc-Met-enkephalin. The analysis of ZULF-TOCSY spectra readily allows one to make sequential assignments, thus offering an alternative to established heteronuclear 2D experiments like HMBC. For Boc-Met-enkephalin, we show that ZULF-TOCSY allows one to observe all expected cross-peaks between carbonyl carbons and α-CH protons, while the popular HMBC method provides insufficient information.


Asunto(s)
Encefalina Metionina/análogos & derivados , Espectroscopía de Resonancia Magnética , Análisis Espectral/métodos
15.
Phys Chem Chem Phys ; 23(12): 7125-7134, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33876078

RESUMEN

The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrate via chemical addition of H2 in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually 13C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins continually relax back to thermal equilibrium. Here we demonstrate two constant-adiabaticity field sweep methods, one in which the field passes through zero, and one in which the field is swept from zero, for optimal polarization transfer on a model AA'X spin system, [1-13C]fumarate. We introduce a method for calculating the constant-adiabaticity magnetic field sweeps, and demonstrate that they enable approximately one order of magnitude faster spin-order conversion compared to linear sweeps. The present method can thus be utilized to manipulate nonthermal order in heteronuclear spin systems.

16.
Phys Chem Chem Phys ; 23(37): 20936-20944, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34542122

RESUMEN

Detailed experimental and comprehensive theoretical analysis of singlet-triplet conversion in molecular hydrogen dissolved in a solution together with organometallic complexes used in experiments with parahydrogen (the H2 molecule in its nuclear singlet spin state) is reported. We demonstrate that this conversion, which gives rise to formation of orthohydrogen (the H2 molecule in its nuclear triplet spin state), is a remarkably efficient process that strongly reduces the resulting NMR (nuclear magnetic resonance) signal enhancement, here of 15N nuclei polarized at high fields using suitable NMR pulse sequences. We make use of a simple improvement of traditional pulse sequences, utilizing a single pulse on the proton channel that gives rise to an additional strong increase of the signal. Furthermore, analysis of the enhancement as a function of the pulse length allows one to estimate the actual population of the spin states of H2. We are also able to demonstrate that the spin conversion process in H2 is strongly affected by the concentration of 15N nuclei. This observation allows us to explain the dependence of the 15N signal enhancement on the abundance of 15N isotopes.

17.
J Chem Phys ; 154(14): 144201, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33858171

RESUMEN

The field of zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is currently experiencing rapid growth, owing to progress in optical magnetometry and attractive features of ZULF-NMR such as low hardware cost and excellent spectral resolution achieved under ZULF conditions. In this work, an approach is proposed and demonstrated for simultaneous acquisition of ZULF-NMR spectra of individual 13C-containing isotopomers of chemical compounds in a complex mixture. The method makes use of fast field cycling such that the spin evolution takes place under ZULF conditions, whereas signal detection is performed in a high-field NMR spectrometer. This method has excellent sensitivity, also allowing easy assignment of ZULF-NMR spectra to specific analytes in the mixture. We demonstrate that the spectral information is the same as that given by ZULF-NMR, which makes the method suitable for creating a library of ZULF-NMR spectra of various compounds and their isotopomers. The results of the field-cycling experiments can be presented in a convenient way as 2D-NMR spectra with the direct dimension giving the high-field 13C-NMR spectrum (carrying the chemical-shift information) and the indirect dimension giving the ZULF-NMR spectrum (containing information about proton-carbon J-couplings). Hence, the method can be seen as a variant of heteronuclear J-resolved spectroscopy, one of the first 2D-NMR techniques.

18.
J Chem Phys ; 155(12): 124311, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34598559

RESUMEN

The population imbalance between nuclear singlet states and triplet states of strongly coupled spin-1/2 pairs, also known as nuclear singlet order, is well protected against several common relaxation mechanisms. We study the nuclear singlet relaxation of 13C pairs in aqueous solutions of 1,2-13C2 squarate over a range of pH values. The 13C singlet order is accessed by introducing 18O nuclei in order to break the chemical equivalence. The squarate dianion is in chemical equilibrium with hydrogen-squarate (SqH-) and squaric acid (SqH2) characterized by the dissociation constants pK1 = 1.5 and pK2 = 3.4. Surprisingly, we observe a striking increase in the singlet decay time constants TS when the pH of the solution exceeds ∼10, which is far above the acid-base equilibrium points. We derive general rate expressions for chemical-exchange-induced nuclear singlet relaxation and provide a qualitative explanation of the TS behavior of the squarate dianion. We identify a kinetic contribution to the singlet relaxation rate constant, which explicitly depends on kinetic rate constants. Qualitative agreement is achieved between the theory and the experimental data. This study shows that infrequent chemical events may have a strong effect on the relaxation of nuclear singlet order.

19.
Magn Reson Chem ; 59(12): 1216-1224, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34085303

RESUMEN

Signal amplification by reversible exchange (SABRE) is a popular method for generating strong signal enhancements in nuclear magnetic resonance (NMR). In SABRE experiments, the source of polarization is provided by the nonthermal spin order of parahydrogen (pH2 , the H2 molecule in its nuclear singlet spin state). Polarization formation requires that both pH2 and a substrate molecule bind to an Ir-based complex where polarization transfer occurs. Subsequently, the complex dissociates and free polarized substrate molecules are formed. In this work, we present approaches towards biocompatible SABRE, meaning that several small biomolecules are simultaneously polarized by using the SABRE method in water-ethanol solutions at room temperature. We are able to demonstrate significant 15 N-NMR signal enhancements in water-ethanol solutions for biomolecules like nicotinamide, metronidazole, adenosine-5'-monophosphate, and 4-methylimidazole and found that the first three substrates are polarized at the same level as a well-known pyridine. We show that simultaneous polarization of several molecules is indeed feasible when the reactions are carried out at an ultralow field of about 400-500 nT. The achieved enhancements are between 100-fold and 15,000-fold. The resulting 15 N polarization (maximal value about 4% achieved for metronidazole and pyridine at 45°C) strongly depends on the sample temperature, pH2 bubbling pressure, and pH2 flow. One more parameter, which is important for optimizing the enhancement, is the solvent pH. Hence, this study presents a step in developing biocompatible SABRE polarization and gives a clue on how such SABRE experiments should be optimized to achieve the highest NMR signal enhancement.


Asunto(s)
Etanol , Agua , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Solventes
20.
Angew Chem Int Ed Engl ; 60(28): 15371-15375, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908694

RESUMEN

Herein, we investigate a novel set of polarizing agents-mixed-valence compounds-by theoretical and experimental methods and demonstrate their performance in high-field dynamic nuclear polarization (DNP) NMR experiments in the solid state. Mixed-valence compounds constitute a group of molecules in which molecular mobility persists even in solids. Consequently, such polarizing agents can be used to perform Overhauser-DNP experiments in the solid state, with favorable conditions for dynamic nuclear polarization formation at ultra-high magnetic fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA