Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687982

RESUMEN

Prostate cancer (PC) is one of the major causes of death among elderly men. PC is often diagnosed later in progression due to asymptomatic early stages. Early detection of PC is thus crucial for effective PC treatment. The aim of this study is the simultaneous highly sensitive detection of a palette of PC-associated microRNAs (miRNAs) in human plasma samples. With this aim, a nanoribbon biosensor system based on "silicon-on-insulator" structures (SOI-NR biosensor) has been employed. In order to provide biospecific detection of the target miRNAs, the surface of individual nanoribbons has been sensitized with DNA oligonucleotide probes (oDNA probes) complementary to the target miRNAs. The lowest concentration of nucleic acids, detectable with our biosensor, has been found to be 1.1 × 10-17 M. The successful detection of target miRNAs, isolated from real plasma samples of PC patients, has also been demonstrated. We believe that the development of highly sensitive nanotechnology-based biosensors for the detection of PC markers is a step towards personalized medicine.


Asunto(s)
MicroARNs , Nanotubos de Carbono , Ácidos Nucleicos , Neoplasias de la Próstata , Anciano , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Nanotecnología
2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768195

RESUMEN

The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches". This new approach is fundamentally unique in terms of its research object (a single biomacromolecule). Most studies are currently performed using postgenomic technologies that allow the properties of several hundreds of millions or even billions of biomacromolecules to be analyzed. This paper discusses the relevance and theoretical, methodological, and practical issues related to the development potential of a single-molecule approach using methods based on molecular detectors.


Asunto(s)
Genómica , Virus , Genómica/métodos , Proteómica/métodos , Biología Computacional , Metabolómica/métodos
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958620

RESUMEN

Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.


Asunto(s)
Nanoporos , Peroxidasa de Rábano Silvestre/química , Ácidos Sulfónicos/química , Benzotiazoles/química , Sustancias Macromoleculares
4.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240343

RESUMEN

Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.


Asunto(s)
Albúmina Sérica Bovina , Microscopía de Fuerza Atómica/métodos , Albúmina Sérica Bovina/química , Espectrometría de Masas/métodos
5.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203578

RESUMEN

This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip. This study aimed to determine the role of the surface and crosslinker in the efficient concentration of various types of proteins in plasma over a wide concentration range. The substrate surface was modified with a 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) photocrosslinker, activated by UV irradiation. AFM chips were incubated with plasma samples from a healthy volunteer at various dilution ratios (102X, 104X, and 106X). Control experiments were performed without UV irradiation to evaluate the contribution of physical protein adsorption to the concentration efficiency. AFM imaging confirmed the presence of protein layers on the chip surface after incubation with the samples. MS analysis of different samples indicated that the proteomic profile of the AFM-visualized layers contained common and unique proteins. In the working series of experiments, 228 proteins were identified on the chip surface for all samples, and 21 proteins were not identified in the control series. In the control series, a total of 220 proteins were identified on the chip surface, seven of which were not found in the working series. In plasma samples at various dilution ratios, a total of 146 proteins were identified without the concentration step, while 17 proteins were not detected in the series using AFM chips. The introduction of a concentration step using AFM chips allowed us to identify more proteins than in plasma samples without this step. We found that AFM chips with a modified surface facilitate the efficient concentration of proteins owing to the adsorption factor and the formation of covalent bonds between the proteins and the chip surface. The results of our study can be applied in the development of highly sensitive analytical systems for determining the complete composition of the plasma proteome.


Asunto(s)
Proteínas Sanguíneas , Proteómica , Humanos , Silicatos de Aluminio , Espectrometría de Masas
6.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209175

RESUMEN

The three-dimensional structure of monomers and homodimers of CYP102A1/WT (wild-type) proteins and their A83F and A83I mutant forms was predicted using the AlphaFold2 (AF2) and AlphaFold Multimer (AFMultimer) programs, which were compared with the rate constants of hydroxylation reactions of these enzyme forms to determine the efficiency of intra- and interprotein electron transport in the CYP102A1 hydroxylase system. The electron transfer rate constants (ket), which determine the rate of indole hydroxylation by the CYP102A1 system, were calculated based on the distances (R) between donor-acceptor prosthetic groups (PG) FAD→FMN→HEME of these proteins using factor ß, which describes an exponential decay from R the speed of electron transport (ET) according to the tunnelling mechanism. It was shown that the structure of monomers in the homodimer, calculated using the AlpfaFold Multimer program, is in good agreement with the experimental structures of globular domains (HEME-, FMN-, and FAD-domains) in CYP102A1/WT obtained by X-ray structural analysis, and the structure of isolated monomers predicted in AF2 does not coincide with the structure of monomers in the homodimer, although a high level of similarity in individual domains remains. The structures of monomers and homodimers of A83F and A83I mutants were also calculated, and their structures were compared with the wild-type protein. Significant differences in the structure of all isolated monomers with respect to the structures of monomers in homodimers were also found for them, and at the same time, insignificant differences were revealed for all homodimers. Comparative analysis for CYP102A1/WT between the calculated intra- and interprotein distances FAD→FMN→HEME and the rate constants of hydroxylation in these proteins showed that the distance between prosthetic groups both in the monomer and in the dimer allows the implementation of electron transfer between PGs, which is consistent with experimental literature data about kcat. For the mutant form of monomer A83I, an increase in the distance between PGs was obtained, which can restrict electron transportation compared to WT; however, for the dimer of this protein, a decrease in the distance between PGs was observed compared to the WT form, which can lead to an increase in the electron transfer rate constant and, accordingly, kcat. For the monomer and homodimer of the A83F mutant, the calculations showed an increase in the distance between the PGs compared to the WT form, which should have led to a decrease in the electron transfer rate, but at the same time, for the homodimer, the approach of the aromatic group F262 with heme can speed up transportation for this form and, accordingly, the rate of hydroxylation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Transporte de Electrón , Modelos Moleculares , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/metabolismo , Conformación Proteica , Multimerización de Proteína , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/genética , NADPH-Ferrihemoproteína Reductasa/genética , Mutación Puntual , Unión Proteica , Relación Estructura-Actividad
7.
Sensors (Basel) ; 21(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668578

RESUMEN

Application of micro-Raman spectroscopy for the monitoring of quality of nanowire sensor chips fabrication has been demonstrated. Nanowire chips have been fabricated on the basis of «silicon-on-insulator¼ (SOI) structures (SOI-NW chips). The fabrication of SOI-NW chips was performed by optical litography with gas-phase etching. The so-fabricated SOI-NW chips are intended for highly sensitive detection of brain cancer biomarkers in humans. In our present study, two series of experiments have been conducted. In the first experimental series, detection of a synthetic DNA oligonucleotide (oDNA) analogue of brain cancer-associated microRNA miRNA-363 in purified buffer solution has been performed in order to demonstrate the high detection sensitivity. The second experimental series has been performed in order to reveal miRNA-363 itself in real human plasma samples. To provide detection biospecificity, the SOI-NW chip surface was modified by covalent immobilization of probe oligonucleotides (oDNA probes) complementary to the target biomolecules. Using the SOI-NW sensor chips proposed herein, the concentration detection limit of the target biomolecules at the level of 3.3 × 10-17 M has been demonstrated. Thus, the approach employing the SOI-NW chips proposed herein represents an attractive tool in biomedical practice, aimed at the early revelation of oncological diseases in humans.


Asunto(s)
Técnicas Biosensibles , Neoplasias Encefálicas , MicroARNs , Nanocables , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Humanos , MicroARNs/genética , Plasma , Control de Calidad , Silicio , Espectrometría Raman
8.
Molecules ; 26(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207397

RESUMEN

The review covers some research conducted in the field of medical and biomedical application of devices based on silicon sensor elements (Si-NW-sensors). The use of Si-NW-sensors is one of the key methods used in a whole range of healthcare fields. Their biomedical use is among the most important ones as they offer opportunities for early diagnosis of oncological pathologies, for monitoring the prescribed therapy and for improving the people's quality of life.


Asunto(s)
Técnicas Biosensibles/instrumentación , Detección Precoz del Cáncer/instrumentación , Nanocables/química , Neoplasias/diagnóstico , Silicio/química , Humanos , Calidad de Vida
9.
Molecules ; 26(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435278

RESUMEN

Atomic force microscopy (AFM)-based fishing is a promising method for the detection of low-abundant proteins. This method is based on the capturing of the target proteins from the analyzed solution onto a solid substrate, with subsequent counting of the captured protein molecules on the substrate surface by AFM. Protein adsorption onto the substrate surface represents one of the key factors determining the capturing efficiency. Accordingly, studying the factors influencing the protein adsorbability onto the substrate surface represents an actual direction in biomedical research. Herein, the influence of water motion in a flow-based system on the protein adsorbability and on its enzymatic activity has been studied with an example of horseradish peroxidase (HRP) enzyme by AFM, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and conventional spectrophotometry. In the experiments, HRP solution was incubated in a setup modeling the flow section of a biosensor communication. The measuring cell with the protein solution was placed near a coiled silicone pipe, through which water was pumped. The adsorbability of the protein onto the surface of the mica substrate has been studied by AFM. It has been demonstrated that incubation of the HRP solution near the coiled silicone pipe with flowing water leads to an increase in its adsorbability onto mica. This is accompanied by a change in the enzyme's secondary structure, as has been revealed by ATR-FTIR. At the same time, its enzymatic activity remains unchanged. The results reported herein can be useful in the development of models describing the influence of liquid flow on the properties of enzymes and other proteins. The latter is particularly important for the development of biosensors for biomedical applications-particularly for serological analysis, which is intended for the early diagnosis of various types of cancer and infectious diseases. Our results should also be taken into account in studies of the effects of protein aggregation on hemodynamics, which plays a key role in human body functioning.


Asunto(s)
Peroxidasa de Rábano Silvestre/aislamiento & purificación , Agua/química , Técnicas Biosensibles , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Microscopía de Fuerza Atómica , Estructura Secundaria de Proteína , Siliconas/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
Molecules ; 26(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34641523

RESUMEN

MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).


Asunto(s)
Trastorno del Espectro Autista/sangre , Proteínas Sanguíneas/genética , MicroARN Circulante/sangre , Microscopía de Fuerza Atómica/instrumentación , Adulto , Proteínas Sanguíneas/metabolismo , Niño , MicroARN Circulante/metabolismo , Femenino , Humanos , Masculino , Microscopía de Fuerza Atómica/métodos , Persona de Mediana Edad , Canales de Potasio con Entrada de Voltaje/sangre , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Molecules ; 26(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207029

RESUMEN

The application of micro-Raman spectroscopy was used for characterization of structural features of the high-k stack (h-k) layer of "silicon-on-insulator" (SOI) nanowire (NW) chip (h-k-SOI-NW chip), including Al2O3 and HfO2 in various combinations after heat treatment from 425 to 1000 °C. After that, the NW structures h-k-SOI-NW chip was created using gas plasma etching optical lithography. The stability of the signals from the monocrine phase of HfO2 was shown. Significant differences were found in the elastic stresses of the silicon layers for very thick (>200 nm) Al2O3 layers. In the UV spectra of SOI layers of a silicon substrate with HfO2, shoulders in the Raman spectrum were observed at 480-490 cm-1 of single-phonon scattering. The h-k-SOI-NW chip created in this way has been used for the detection of DNA-oligonucleotide sequences (oDNA), that became a synthetic analog of circular RNA-circ-SHKBP1 associated with the development of glioma at a concentration of 1.1 × 10-16 M. The possibility of using such h-k-SOI NW chips for the detection of circ-SHKBP1 in blood plasma of patients diagnosed with neoplasm of uncertain nature of the brain and central nervous system was shown.


Asunto(s)
Glioma/genética , Nanocables/química , ARN Circular/química , ARN Circular/genética , Silicio/química , Anciano , Técnicas Biosensibles/métodos , Encéfalo/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Espectrometría Raman/métodos
12.
J Proteome Res ; 18(12): 4206-4214, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31599598

RESUMEN

This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.


Asunto(s)
Proteínas/análisis , Proteoma , Proteómica/métodos , Técnicas Biosensibles , Electroforesis en Gel Bidimensional , Genoma Humano , Humanos , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Procesamiento Proteico-Postraduccional , Proteínas/aislamiento & purificación , Federación de Rusia , Sensibilidad y Especificidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Flujo de Trabajo
13.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642632

RESUMEN

This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Proteoma/química , Imagen Individual de Molécula/métodos , Animales , Humanos
14.
Micromachines (Basel) ; 15(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38675310

RESUMEN

Glycerol is employed as a functional component of heat-transfer fluids, which are of use in both bioreactors and various biosensor devices. At the same time, flowing glycerol was reported to cause considerable triboelectric effects. Herein, by using atomic force microscopy (AFM), we have revealed the long-term effect of glycerol flow, stopped in a ground-shielded coiled heat exchanger, on horseradish peroxidase (HRP) adsorption on mica. Namely, the solution of HRP was incubated in the vicinity of the side of the cylindrical coil with stopped glycerol flow, and then HRP was adsorbed from this solution onto a mica substrate. This incubation has been found to markedly increase the content of aggregated enzyme on mica-as compared with the control enzyme sample. We explain the phenomenon observed by the influence of triboelectrically induced electromagnetic fields of non-trivial topology. The results reported should be further considered in the development of flow-based heat exchangers of biosensors and bioreactors intended for operation with enzymes.

15.
Micromachines (Basel) ; 14(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241647

RESUMEN

Glycerol is a usable component of heat-transfer fluids, and is thus suitable for the use in microchannel-based heat exchangers in biosensors and microelectronic devices. The flow of a fluid can lead to the generation of electromagnetic fields, which can affect enzymes. Herein, by means of atomic force microscopy (AFM) and spectrophotometry, a long-term effect of stopped flow of glycerol through a coiled heat exchanger on horseradish peroxidase (HRP) has been revealed. Samples of buffered HRP solution were incubated near either the inlet or the outlet sections of the heat exchanger after stopping the flow. It has been found that both the enzyme aggregation state and the number of mica-adsorbed HRP particles increase after such an incubation for 40 min. Moreover, the enzymatic activity of the enzyme incubated near the inlet section has been found to increase in comparison with that of the control sample, while the activity of the enzyme incubated near the outlet section remained unaffected. Our results can find application in the development of biosensors and bioreactors, in which flow-based heat exchangers are employed.

16.
Biomolecules ; 13(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136647

RESUMEN

Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors-highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM). The high sensitivity of an AFM-based bioanalysis system is determined by the size of the sensing element of an atomic force microscope-the cantilever-the radius of the curvature of which is comparable to that of a biomolecule. Biospecific molecular probe-target interactions are used to ensure detection system specificity. Antibodies, aptamers, synthetic antibodies, and peptides can be used as molecular probes. This study has demonstrated the possibility of using aptamers as molecular probes for AFM-based detection of the ovarian cancer biomarker CA125. Antigen detection in a nanomolar solution was carried out using AFM chips with immobilized aptamers, commercially available or synthesized based on sequences from open sources. Both aptamer types can be used for antigen detection, but the availability of sequence information enables additional modeling of the aptamer structure with allowance for modifications necessary for immobilization of the aptamer on an AFM chip surface. Information on the structure and oligomeric composition of aptamers in the solution was acquired by combining small-angle X-ray scattering and molecular modeling. Modeling enabled pre-selection, before the experimental stage, of aptamers for use as surface-immobilized molecular probes.


Asunto(s)
Aptámeros de Nucleótidos , Microscopía de Fuerza Atómica , Aptámeros de Nucleótidos/química , Sondas Moleculares , Modelos Moleculares
17.
Micromachines (Basel) ; 14(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37893383

RESUMEN

The development of highly sensitive diagnostic systems for the early revelation of diseases in humans is one of the most important tasks of modern biomedical research, and the detection of the core antigen of the hepatitis C virus (HCVcoreAg)-a protein marker of the hepatitis C virus-is just the case. Our study is aimed at testing the performance of the nanoribbon biosensor in the case of the use of two different types of molecular probes: the antibodies and the aptamers against HCVcoreAg. The nanoribbon sensor chips employed are based on "silicon-on-insulator structures" (SOI-NR). Two different HCVcoreAg preparations are tested: recombinant ß-galactosidase-conjugated HCVcoreAg ("Virogen", Watertown, MA, USA) and recombinant HCVcoreAg ("Vector-Best", Novosibirsk, Russia). Upon the detection of either type of antigen preparation, the lowest concentration of the antigen detectable in buffer with pH 5.1 was found to be approximately equal, amounting to ~10-15 M. This value was similar upon the use of either type of molecular probes.

18.
Biomedicines ; 10(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289907

RESUMEN

This paper presents an investigation of the temperature dependence of the oligomeric state of the horseradish peroxidase (HRP) enzyme on the temperature of its solution, and on the solution storage time, at the single-molecule level. Atomic force microscopy has been employed to determine how the temperature and the storage time of the HRP solution influence its aggregation upon direct adsorption of the enzyme from the solution onto bare mica substrates. In parallel, spectrophotometric measurements have been performed in order to estimate whether the HRP enzymatic activity changes over time upon the storage of the enzyme solution. The temperature dependence of the HRP oligomeric state has been studied within a broad (15-40 °C) temperature range. It has been demonstrated that the storage of the HRP solution for 14 days does not have any considerable effect on the oligomeric state of the enzyme, neither does it affect its activity. At longer storage times, AFM has allowed us to reveal a tendency of HRP to oligomerization during the storage of its buffered solution, while the enzymatic activity remains virtually unchanged even after a 1-month-long storage. By AFM, it has been revealed that after the incubation of a mica substrate in the HRP solution at various temperatures, the content of the mica-adsorbed oligomers increases insignificantly owing to a high-temperature stability of the enzyme.

19.
Diagnostics (Basel) ; 12(4)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35453991

RESUMEN

The radiothermometry (RTM) study of a cytochrome-containing system (CYP102 A1) has been conducted in order to demonstrate the applicability of RTM for monitoring changes in the functional activity of an enzyme in case of its point mutation. The study has been performed with the example of the wild-type cytochrome (WT) and its mutant type A264K. CYP102 A1 is a nanoscale protein-enzymatic system of about 10 nm in size. RTM uses a radio detector and can record the corresponding brightness temperature (Tbr) of the nanoscale enzyme solution within the 3.4-4.2 GHz frequency range during enzyme functioning. It was found that the enzymatic reaction during the lauric acid hydroxylation at the wild-type CYP102 A1 (WT) concentration of ~10-9 M is accompanied by Tbr fluctuations of ~0.5-1 °C. At the same time, no Tbr fluctuations are observed for the mutated forms of the enzyme CYP102 A1 (A264K), where one amino acid was replaced. We know that the activity of CYP102 A1 (WT) is ~4 orders of magnitude higher than that of CYP102 A1 (A264K). We therefore concluded that the disappearance of the fluctuation of Tbr CYP102 A1 (A264K) is associated with a decrease in the activity of the enzyme. This effect can be used to develop new methods for testing the activity of the enzyme that do not require additional labels and expensive equipment, in comparison with calorimetry and spectral methods. The RTM is beginning to find application in the diagnosis of oncological diseases and for the analysis of biochemical processes.

20.
Genes (Basel) ; 13(2)2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-35205244

RESUMEN

MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive "silicon-on-insulator"-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal-oxide-semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography. In our experiments described herein, we demonstrate the revelation of ASD-associated miRNAs in human plasma with the SOI-NS, whose sensor elements were sensitized with oligonucleotide probes. In order to determine the concentration sensitivity of the SOI-NS, experiments on the detection of synthetic DNA analogues of autism-associated miRNAs in purified buffer were performed. The lower limit of miRNA detection attained in our experiments amounted to 10-17 M.


Asunto(s)
Trastorno Autístico , Técnicas Biosensibles , MicroARNs , Nanocables , Trastorno Autístico/genética , Biomarcadores , Niño , Humanos , MicroARNs/genética , Nanocables/química , Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA