RESUMEN
Crystalline cerium(III) phosphate (CePO4), cerium(IV) phosphates, and nanocrystalline ceria are considered to be promising components of sunscreen cosmetics. This paper reports on a study in which, for the first time, a quantitative comparative analysis was performed of the UV-shielding properties of CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and CePO4/CeO2 composites. Both the sun protection factor and protection factor against UV-A radiation of the materials were determined. Ce(PO4)(HPO4)0.5(H2O)0.5 was shown to have a sun protection factor of 2.9, which is comparable with that of nanocrystalline ceria and three times higher than the sun protection factor of CePO4. Composites containing both cerium dioxide and CePO4 demonstrated higher sun protection factors (up to 1.8) than individual CePO4. When compared with the TiO2 Aeroxide P25 reference sample, cerium(III) and cerium(IV) phosphates demonstrated negligible photocatalytic activity. A cytotoxicity analysis performed using two mammalian cell lines, hMSc and NCTC L929, showed that CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and nanocrystalline ceria were all non-toxic. The results of this comparative study indicate that cerium(IV) phosphate Ce(PO4)(HPO4)0.5(H2O)0.5 is more advantageous for use in sunscreens than either cerium(III) phosphate or CePO4/CeO2 composites, due to its improved UV-shielding properties and low photocatalytic activity.
RESUMEN
PURPOSE OF THE STUDY: the creation of a dextran coating on cerium oxide crystals using different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of antimicrobial effect. MATERIALS AND METHODS: Nanocomposites were synthesized using cerium nitrate and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO3)3x6H2O to dextran (by weight)-1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography-mass spectrometry against E. coli after 24 h and 48 h of co-incubation. RESULTS: According to the physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm) were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for Ce2D and C3D sols. At a nanoceria concentration of 10-2 M, the proliferative activity of fibroblasts was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D. The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased with increasing dextran concentration, and the highest level was registered in Ce3D; from the dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which significantly inhibited the multiplication of E. coli after 24 h by an average of 22-27%, and after 48 h, all nanocomposites suppressed the multiplication of E. coli by 58-77%, which was the most pronounced for Ce0.5D, Ce1D, and Ce2D. CONCLUSIONS: The necessary physical characteristics of nanoceria-dextran nanocomposites that provide the best wound healing biological effects were determined. Ce2D at a concentration of 10-3 M, which stimulates cell proliferation and metabolism up to 2.5 times and allows a reduction in the rate of microorganism multiplication by three to four times, was selected for subsequent nanodrug creation.
Asunto(s)
Cerio , Dextranos , Escherichia coli , Fibroblastos , Nanocompuestos , Cicatrización de Heridas , Cerio/química , Cerio/farmacología , Dextranos/química , Dextranos/farmacología , Nanocompuestos/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Proliferación Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea CelularRESUMEN
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.
Asunto(s)
Cerio , Nanopartículas , Humanos , Cerio/farmacología , Cerio/química , Nanopartículas/químicaRESUMEN
Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection. Herein, detailed experimental data are reported on the biocompatibility towards hMSc of heavily gadolinium-doped cerium oxide nanoparticles (Ce0.8Gd0.2O2-x) synthesised using two synthetic protocols. The relaxivity of the nanoparticles was measured in a magnetic field range from 1 mT to 16.4 T. The relaxivity values (r1 = 11 ± 1.2 mM-1 s-1 and r1 = 7 ± 1.2 mM-1 s-1 in magnetic fields typical of 1.5 and 3 T MRI scanners, respectively) are considerably higher than those of the commercial Omniscan MRI contrast agent. The low toxicity of gadolinium-doped ceria nanoparticles to hMSc enables their use as an effective theranostic tool with improved MRI-contrasting properties.
Asunto(s)
Gadolinio , Nanopartículas , Humanos , Nanopartículas/uso terapéutico , Células Madre , Medios de Contraste , Imagen por Resonancia Magnética/métodosRESUMEN
A method is proposed for the preparation of stable sols of nanocrystalline cerium dioxide in nonpolar solvents, based on surface modification of CeO2 nanoparticles obtained by thermal hydrolysis of concentrated aqueous solutions of ammonium cerium(IV) nitrate with residues of 2-ethylhexanoic and octanoic acids. The synthesis was carried out at temperatures below 100 °C and did not require the use of expensive and toxic reagents. An assessment of the radical-scavenging properties of the obtained sols using the superoxide anion-radical neutralization model revealed that they demonstrate notable antioxidant activity. The results obtained indicate the potential of the nanoscale cerium dioxide sols in nonpolar solvents to be used for creating nanobiomaterials possessing antioxidant properties.
Asunto(s)
Cerio , Nanopartículas , Antioxidantes/química , Cerio/química , Nanopartículas/química , SolventesRESUMEN
Tungsten oxide-based bulk and nanocrystalline materials are widely used as photocatalytic and photo- and electrochromic materials, as well as materials for biomedical applications. In our work, we focused our attention on the effect of sodium cations on the structure and photochromic properties of the WO3@PVP aqueous sols. To establish the effect, the sols were synthesized by either simple pH adjusting of sodium or ammonium tungstates' solutions, or using an ion exchange technique to remove the cations from the materials to the greatest possible extent. We showed that the presence of sodium cations in WO3@PVP favors the formation of reduced tungsten species (W+5) upon UV irradiation of the materials, strongly affecting their photochromic and photocatalytic properties. The pronounced photoreductive properties of WO3@PVP sols in photocatalytic reactions were demonstrated. Due to photoreductive properties, photochromic sols of tungsten oxide can act as effective photoprotectors in photooxidation processes. We believe that our work provides a considerable contribution to the elucidation of photochromic and redox phenomena in WO3-based materials.
Asunto(s)
Nanopartículas/química , Óxidos/química , Povidona/química , Sodio/química , Tungsteno/química , Catálisis , Cationes , Concentración de Iones de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Dispersión del Ángulo Pequeño , Rayos Ultravioleta , Difracción de Rayos XRESUMEN
The electrorheological (ER) effect was experimentally observed in dielectric suspensions containing tungsten oxide (WO3) modified with surfactant molecules (sodium dodecyl sulfate (SDS) and dodecylamine (DDA)) in electric fields up to several kilovolts per millimeter. The dielectric properties of WO3 suspensions in silicone oil were analyzed, depending on the frequency of the electric field, in the range from 25 to 106 Hz. Unmodified WO3 suspensions, as well as suspensions modified with sodium dodecyl sulfate, were shown to exhibit a positive electrorheological effect, whereas suspensions modified with dodecylamine demonstrated a negative electrorheological effect. The quantitative characteristics of the negative electrorheological effect in the strain-compression and shear regimes were obtained for the first time. Visualization experiments were performed to see the chain structures formed by WO3 particles modified with sodium dodecyl sulfate, as well as for dynamic electroconvection in electrorheological fluids containing WO3 modified with dodecylamine. The negative electrorheological effect was shown to be associated with the processes of phase separation in the electric field, which led to a multiplicative effect and a strong electroconvection of the suspension at field strengths above 1 kV/mm.
Asunto(s)
Aminas/química , Técnicas Electroquímicas , Óxidos/química , Reología , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Tungsteno/química , SuspensionesRESUMEN
A series of carbon aerogels (C-AGs) were prepared by the pyrolysis of resorcinol-formaldehyde aerogels at 700-1100 °C as potential supercapacitor electrodes, and their texture and electrochemical properties were determined. The specific surface area of all C-AGs was in the range of 700-760 m2/g, their electron conductivity increased linearly from 0.4 to 4.46 S/cm with an increase of the pyrolysis temperature. The specific capacitance of electrode material based on C-AGs reached 100 F/g in sulfuric acid and could be realized at a 2 A/g charge-discharge current, which makes it possible to use carbon aerogels as electrode materials.
Asunto(s)
Carbono/química , Formaldehído/química , Geles/química , Resorcinoles/química , Capacidad Eléctrica , Conductividad Eléctrica , Electroquímica , Electrodos , Geles/síntesis química , Nitrógeno/química , TemperaturaRESUMEN
Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.
RESUMEN
Textiles and nonwovens (including those used in ventilation systems as filters) are currently one of the main sources of patient cross-infection. Healthcare-associated infections (HAIs) affect 5-10% of patients and stand as the tenth leading cause of death. Therefore, the development of new methods for creating functional nanostructured coatings with antibacterial and antiviral properties on the surfaces of textiles and nonwoven materials is crucial for modern medicine. Antimicrobial filter technology must be high-speed, low-energy and safe if its commercialization and mass adoption are to be successful. Cerium oxide nanoparticles can act as active components in these coatings due to their high antibacterial activity and low toxicity. This paper focuses on the elaboration of a high-throughput and resource-saving method for the deposition of cerium oxide nanoparticles onto nonwoven fibrous material for use in air-conditioning filters. The proposed spraying technique is based on the use of an aerodynamic emitter and simultaneous suction. Cerium oxide nanoparticles have successfully been deposited onto the filter materials used in air conditioning systems; the antibacterial activity of the ceria-modified filters exceeded 4.0.
RESUMEN
Ionizing radiation-induced damage in cancer and normal cells leads to apoptosis and cell death, through the intracellular oxidative stress, DNA damage and disorders of their metabolism. Irradiation doses that do not lead to the death of tumor cells can result in the emergence of radioresistant clones of these cells due to the rearrangement of metabolism and the emergence of new mutations, including those in the genes responsible for DNA repair. The search for the substances capable of modulating the functioning of the tumor cell repair system is an urgent task. Here we analyzed the effect of cerium(III) fluoride nanoparticles (CeF3 NPs) on normal (human mesenchymal stem cells-hMSC) and cancer (MCF-7 line) human cells after X-ray radiation. CeF3 NPs effectively prevent the formation of hydrogen peroxide and hydroxyl radicals in an irradiated aqueous solution, showing pronounced antioxidant properties. CeF3 NPs are able to protect hMSC from radiation-induced proliferation arrest, increasing their viability and mitochondrial membrane potential, and, conversely, inducing the cell death of MCF-7 cancer cells, causing radiation-induced mitochondrial hyperpolarization. CeF3 NPs provided a significant decrease in the number of double-strand breaks (DSBs) in hMSC, while in MCF-7 cells the number of γ-H2AX foci dramatically increased in the presence of CeF3 4 h after irradiation. In the presence of CeF3 NPs, there was a tendency to modulate the expression of most analyzed genes associated with the development of intracellular oxidative stress, cell redox status and the DNA-repair system after X-ray irradiation. Cerium-containing nanoparticles are capable of providing selective protection of hMSC from radiation-induced injuries and are considered as a platform for the development of promising clinical radioprotectors.
RESUMEN
Here we describe the galvanic exchange of surface-grown Ag nanorods (NRs) and nanowires (NWs) with PdCl(4)(2-) as a function of the PdCl(4)(2-) concentration. The morphology of the resulting AgPd alloy nanostructures depends on the galvanic exchange rate, which increases with increasing PdCl(4)(2-) concentration over a specific concentration range. When the concentration of PdCl(4)(2-) exceeds 7.5 × 10(-5) M (or ratio of moles of PdCl(4)(2-) in solution to moles of Ag on the surface > 542), rapid galvanic exchange results in Pd deposition over the entire Ag nanostructure in the early stages of exchange. When the concentration of PdCl(4)(2-) is in the range of 1.0 × 10(-5) to 5.0 × 10(-5) M (moles of PdCl(4)(2-) in solution to moles of Ag on the surface = 13-54), Pd deposition occurs preferentially at high energy twin plane defects in the form of well-spaced nanoparticles during the early stages of exchange. In later stages, the Pd deposits grow and coalescence into a rough shell, and etching of the Ag leads to a presumably hollow nanostructure. Composition analysis by linear sweep voltammetry as a function of time shows that the galvanic exchange rate is much slower than the diffusion-limited rate and, when correlated with UV-vis spectroscopy, shows that less than 10% Pd in the nanostructure completely dampens the Ag-localized surface plasmon band.
Asunto(s)
Nanotecnología/métodos , Nanotubos/química , Paladio/química , Plata/química , Propiedades de Superficie , Factores de TiempoRESUMEN
The development of advanced composite biomaterials combining the versatility and biodegradability of polymers and the unique characteristics of metal oxide nanoparticles unveils new horizons in emerging biomedical applications, including tissue regeneration, drug delivery and gene therapy, theranostics and medical imaging. Nanocrystalline cerium(IV) oxide, or nanoceria, stands out from a crowd of other metal oxides as being a truly unique material, showing great potential in biomedicine due to its low systemic toxicity and numerous beneficial effects on living systems. The combination of nanoceria with new generations of biomedical polymers, such as PolyHEMA (poly(2-hydroxyethyl methacrylate)-based hydrogels, electrospun nanofibrous polycaprolactone or natural-based chitosan or cellulose, helps to expand the prospective area of applications by facilitating their bioavailability and averting potential negative effects. This review describes recent advances in biomedical polymeric material practices, highlights up-to-the-minute cerium oxide nanoparticle applications, as well as polymer-nanoceria composites, and aims to address the question: how can nanoceria enhance the biomedical potential of modern polymeric materials?
RESUMEN
Here we quantify the electrochemical oxidation of Ag nanoparticles (NPs) as a function of size by electrostatically attaching Ag NPs synthesized by seed-mediated growth in the presence of citrate (diameter = 8 to 50 nm) to amine-functionalized indium-tin oxide coated glass electrodes (Glass/ITO), obtaining a linear sweep voltammogram from 0.1 V, where Ag(0) is stable, up to 1.0 V, and observing the peak potential (E(p)) for oxidation of Ag(0) to Ag(+). Electrostatic attachment to the organic linker presumably removes direct interactions between Ag and ITO and allows control over the total Ag coverage by altering the soaking time. This is important as both metal-electrode interactions and overall Ag coverage can affect E(p). E(p) shifts positive from an average of 275 to 382 mV as the Ag NP diameter increases for a constant Ag coverage and under conditions of planar diffusion, suggesting a shift in E(p) due to a thermodynamic shift in E(0) for the Ag/Ag(+) redox couple with size. The negative shift in E(p) with decreasing Ag NP radius follows the general trend predicted by theory and agrees with previous qualitative experimental observations. A better understanding of metal nanostructure oxidation is crucial considering their potential use in many different applications and the importance of metal corrosion processes at the nanoscale.
RESUMEN
Here we describe the electrochemical oxidation of an assembly of gold nanoparticles (Au NPs) attached to glass/indium-tin-oxide (ITO) electrodes as a function of particle size. We synthesized Au NP arrays with NP diameters ranging from 8 to 250 nm by electrodeposition of Au from HAuCl(4) in H(2)SO(4) at potentials of -0.2 to 0.8 V versus Ag/AgCl using chronocoulometry to keep the amount of Au deposited constant. The average Au NP size increased with increasing deposition potential. The chemical reduction of HAuCl(4) by NaBH(4) in trisodium citrate solution led to 4 nm average diameter Au NPs, which we chemisorbed to the glass/ITO electrode. Linear sweep voltammograms (LSVs) obtained on the glass/ITO/Au NP (4 to 250 nm) electrodes (with a constant coverage of Au in terms of Au atoms per cm(2)) from 0.5 to 1.1 V in 0.01 M potassium bromide plus 0.1 M HClO(4) showed a positive shift in oxidation potential from 734 +/- 1 mV to 913 +/- 19 mV with increasing Au NP diameter. The shift agrees qualitatively with that predicted by a shift in the redox potential based on a difference in free energy associated with a change in surface energy as a function of particle size. On the basis of the charge during Au deposition versus the charge during oxidation, the oxidation process produces a mixture of Au(III)Br(4)(-) (25%) and Au(I)Br(2)(-) (75%). A glass/ITO electrode coated with a mixture of 4 and 250 nm Au NPs revealed 2 oxidation peaks, consistent with the two Au NP size populations present on the surface.
RESUMEN
Photochromic tungsten oxide (WO3) nanoparticles stabilized by polyvinylpyrrolidone (PVP) were synthesized to evaluate their potential for biomedical applications. PVP-stabilized tungsten oxide nanoparticles demonstrated a highly selective cytotoxic effect on normal and cancer cells in vitro. WO3 nanoparticles were found to induce substantial cell death in osteosarcoma cells (MNNG/HOS cell line) with a half-maximal inhibitory concentration (IC50) of 5 mg/mL, while producing no, or only minor, toxicity in healthy human mesenchymal stem cells (hMSc). WO3 nanoparticles induced intracellular oxidative stress, which led to apoptosis type cell death. The selective anti-cancer effects of WO3 nanoparticles are due to the pH sensitivity of tungsten oxide and its capability of reactive oxygen species (ROS) generation, which is expressed in the modulation of genes involved in reactive oxygen species metabolism, mitochondrial dysfunction, and apoptosis.
Asunto(s)
Antineoplásicos/farmacología , Nanopartículas del Metal/química , Neoplasias/tratamiento farmacológico , Óxidos/química , Povidona/farmacología , Tungsteno/química , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Células Madre Mesenquimatosas/efectos de los fármacos , Microscopía Electrónica de Transmisión , Mitocondrias/patología , Nanopartículas/química , Osteosarcoma/tratamiento farmacológico , Estrés Oxidativo , Especies Reactivas de OxígenoRESUMEN
Cerium oxide nanoparticles (nanoceria) are regarded as one of the most promising inorganic antioxidants for biomedical applications. Considering nanoceria as a potential therapeutic agent, we aimed to develop a robust system for its intracellular delivery using layer-by-layer polyelectrolyte microcapsules. We have shown that citrate-stabilized cerium oxide nanoparticles can be effectively incorporated into the structure of polyelectrolyte microcapsules made from biodegradable and nonbiodegradable polymers. The structure and morphology of synthesized microcapsules were investigated and analyzed using confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and UV/vis spectroscopy. Results of experiments in vitro on B50 neuroblastoma cells confirmed nanoceria delivery into the cell while maintaining their antioxidant properties. The results presented confirm polyelectrolyte microcapsules to be an efficient intracellular delivery system for therapeutic nanoparticles.
RESUMEN
We have demonstrated the influence of cerium dioxide nanoparticles on the immunogenicity of the influenza vaccine on an example of liquid split inactivated Vaxigrip vaccine. Antibody titers were analyzed using the hemagglutination inhibition (HI) assay. Seroprotection, seroconversion, the geometric mean titers (GMTs) and the factor increase (FI) in the GMTs were calculated. The effect of nano-ceria surface stabilizer on the enhancement of immunogenicity was shown. The vaccine modified by citrate-stabilized nano-ceria, in contrast to a non-modified Vaxigrip vaccine, did not provide an adequate level of seroprotection, and seroconversion after vaccination was 66.7% on days 49-63 for virus strain Ð(H1N1) and 100% on day 49 for virus strain B/Yamagata. For the low immunogenic influenza B virus, the rise in antibody titers (GMT/IF) was 24.38/3.28 after the first injection and 50.40/6.79 on day 49. For the vaccine modified by non-stabilized nano-ceria, for all virus strains under study, on day 63, upon immunization notable levels of seroprotection, seroconversion and GMT/IF were registered (higher than for the non-modified Vaxigrip vaccine). The successful attempt to modify the influenza vaccine demonstrates the possible ways of increasing the specific activity of vaccines using nano-ceria.