RESUMEN
Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.
Asunto(s)
Antígenos CD36/inmunología , Ácidos Grasos/metabolismo , Interleucina-4/inmunología , Lipólisis/inmunología , Lisosomas/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Fosforilación Oxidativa , Transducción de Señal/inmunología , Esterol Esterasa/inmunología , Animales , Respiración de la Célula , Helmintiasis Animal/inmunología , Humanos , Ratones , Consumo de Oxígeno , Receptores de Interleucina-4/inmunología , TranscriptomaRESUMEN
BACKGROUND: Long-term health outcomes in children and young people (CYP) after COVID-19 infection are not well understood and studies with control groups exposed to other infections are lacking. This study aimed to investigate the incidence of post-COVID-19 condition (PCC) and incomplete recovery in CYP after hospital discharge and compare outcomes between different SARS-CoV-2 variants and non-SARS-CoV-2 infections. METHODS: A prospective exposure-stratified cohort study of individuals under 18 years old in Moscow, Russia. Exposed cohorts were paediatric patients admitted with laboratory-confirmed COVID-19 infection between April 2 and December 11, 2020 (Wuhan variant cohort) and between January 12 and February 19, 2022 (Omicron variant cohort). CYP admitted with respiratory and intestinal infections, but negative lateral flow rapid diagnostic test and PCR-test results for SARS-CoV-2, between January 12 and February 19, 2022, served as unexposed reference cohort. Comparison between the 'exposed cohorts' and 'reference cohort' was conducted using 1:1 matching by age and sex. Follow-up data were collected via telephone interviews with parents, utilising the long COVID paediatric protocol and survey developed by the International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC). The WHO case definition was used to categorise PCC. RESULTS: Of 2595 CYP with confirmed COVID-19, 1707 (65.7%) participated in follow-up interviews, with 1183/1707 (69%) included in the final 'matched' analysis. The median follow-up time post-discharge was 6.7 months. The incidence of PCC was significantly higher in the Wuhan variant cohort (89.7 cases per 1000 person-months, 95% CI 64.3-120.3) compared to post-infection sequalae in the reference cohort (12.2 cases per 1000 person-months, 95% CI 4.9-21.9), whereas the difference with the Omicron variant cohort and reference cohort was not significant. The Wuhan cohort had higher incidence rates of dermatological, fatigue, gastrointestinal, sensory, and sleep manifestations, as well as behavioural and emotional problems than the reference cohort. The only significant difference between Omicron variant cohort and reference cohort was decreased school attendance. When comparing the Wuhan and Omicron variant cohorts, higher incidence of PCC and event rates of fatigue, decreased physical activity, and deterioration of relationships was observed. The rate of incomplete recovery was also significantly higher in the Wuhan variant cohort than in both the reference and the Omicron variant cohorts. CONCLUSIONS: Wuhan variant exhibited a propensity for inducing a broad spectrum of physical symptoms and emotional behavioural changes, suggesting a pronounced impact on long-term health outcomes. Conversely, the Omicron variant resulted in fewer post-infection effects no different from common seasonal viral illnesses. This may mean that the Omicron variant and subsequent variants might not lead to the same level of long-term health consequences as earlier variants.
Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Niño , Adolescente , Moscú/epidemiología , Incidencia , Estudios Prospectivos , SARS-CoV-2 , COVID-19/epidemiología , Cuidados Posteriores , Estudios de Cohortes , Pandemias , Alta del Paciente , Enfermedad Crónica , FatigaRESUMEN
Macrophage polarization involves a coordinated metabolic and transcriptional rewiring that is only partially understood. By using an integrated high-throughput transcriptional-metabolic profiling and analysis pipeline, we characterized systemic changes during murine macrophage M1 and M2 polarization. M2 polarization was found to activate glutamine catabolism and UDP-GlcNAc-associated modules. Correspondingly, glutamine deprivation or inhibition of N-glycosylation decreased M2 polarization and production of chemokine CCL22. In M1 macrophages, we identified a metabolic break at Idh, the enzyme that converts isocitrate to alpha-ketoglutarate, providing mechanistic explanation for TCA cycle fragmentation. (13)C-tracer studies suggested the presence of an active variant of the aspartate-arginosuccinate shunt that compensated for this break. Consistently, inhibition of aspartate-aminotransferase, a key enzyme of the shunt, inhibited nitric oxide and interleukin-6 production in M1 macrophages, while promoting mitochondrial respiration. This systems approach provides a highly integrated picture of the physiological modules supporting macrophage polarization, identifying potential pharmacologic control points for both macrophage phenotypes.
Asunto(s)
Redes Reguladoras de Genes/inmunología , Inmunidad Innata , Macrófagos/metabolismo , Mitocondrias/metabolismo , Transcripción Genética/inmunología , Animales , Ácido Argininosuccínico/inmunología , Ácido Argininosuccínico/metabolismo , Aspartato Aminotransferasa Mitocondrial/genética , Aspartato Aminotransferasa Mitocondrial/inmunología , Ácido Aspártico/inmunología , Ácido Aspártico/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/inmunología , Ciclo del Ácido Cítrico , Regulación de la Expresión Génica , Glutamina/deficiencia , Glicosilación , Interleucina-6/genética , Interleucina-6/inmunología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/inmunología , Macrófagos/clasificación , Macrófagos/citología , Macrófagos/inmunología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Ratones , Mitocondrias/genética , Mitocondrias/inmunología , Óxido Nítrico/inmunología , Óxido Nítrico/metabolismo , Transducción de Señal , Uridina Difosfato N-Acetilglucosamina/inmunología , Uridina Difosfato N-Acetilglucosamina/metabolismoRESUMEN
Isothiazolo[4,3-b]pyridines have been extensively explored as inhibitors of cyclin G-associated kinase (GAK). In order to expand the structure-activity relationship study and to discover other chemotypes that act as GAK inhibitors, the closely related isothiazolo[4,5-b]pyridine scaffold was explored. An easy and efficient synthetic procedure to access 3,5- and 3,6-dihalogenated isothiazolo[4,5-b]pyridines as key building blocks was developed. Regioselective functionalization with various substituents was performed. None of the newly synthesized isothiazolo[4,5-b]pyridines were active as GAK inhibitors. Molecular modeling was applied to rationalise their inactivity as GAK binders.
Asunto(s)
Inhibidores de Proteínas Quinasas , Piridinas , Tiazoles , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Humanos , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Relación Estructura-Actividad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Modelos Moleculares , Estructura Molecular , Péptidos y Proteínas de Señalización IntracelularRESUMEN
Adeno-associated virus (AAV) is showing promise as a therapy for diseases that contain a single-gene deletion or mutation. One major scale-up challenge is the removal of empty or non-gene of interest containing AAV capsids. Analytically, the empty capsids can be separated from full capsids using anion exchange chromatography. However, when scaled up to manufacturing, the minute changes in conductivity are difficult to consistently obtain. To better understand the differences in the empty and full AAV capsids, we have developed a single-particle atomic force microscopy (AFM) method to measure the differences in the charge and hydrophobicity of AAV capsids at the single-particle level. The atomic force microscope tip was functionalized with either a charged or a hydrophobic molecule, and the adhesion force between the functionalized atomic force microscope tip and the virus was measured. We measured a change in the charge and hydrophobicity between empty and full AAV2 and AAV8 capsids. The charge and hydrophobicity differences between AAV2 and AAV8 are related to the distribution of charge on the surface and not the total charge. We propose that the presence of nucleic acids inside the capsid causes minor but measurable changes in the capsid structure that lead to measurable surface changes in charge and hydrophobicity.
Asunto(s)
Cápside , Dependovirus , Cápside/química , Dependovirus/genética , Microscopía de Fuerza Atómica , Proteínas de la Cápside , Vectores GenéticosRESUMEN
Phosphorescence is considered one of the non-invasive glioblastoma testing methods based on studying molecular energy and the metabolism of L-tryptophan (Trp) through KP, which provides essential information on regulating immunity and neuronal function. This study aimed to conduct a feasibility study using phosphorescence in clinical oncology as an early prognostic test in detecting Glioblastoma. This study was conducted on 1039 patients who were operated on with follow-up between January 1, 2014, and December 1, 2022, and retrospectively evaluated in participating institutions in Ukraine (the Department of Oncology, Radiation Therapy, Oncosurgery, and Palliative Care at the Kharkiv National Medical University). Method of protein phosphorescence detection included two steps. During the first step, of luminol-dependent phosphorescence intensity in serum was carried out after its activation by the light source, according to the spectrofluorimeter method, as follows. At a temperature of 30 °C, serum drops were dried for 20 min to form a solid film. After that, we put the quartz plate with dried serum in a phosphoroscope of luminescent complex and measured the intensity. With the help of Max-Flux Diffraction Optic Parallel Beam Graded Multilayer Monochromator (Rigaku Americas Corporation) following spectral lines as 297, 313, 334, 365, 404, and 434 nm were distinguished and absorbed by serum film in the form of light quantum. The monochromator exit split width was 0.5 mm. Considering the limitations of each of the non-invasive tools currently available, phosphorescence-based diagnostic methods are ideally integrated into the NIGT platform: a non-invasive approach for visualizing a tumor and its main tumor characteristics in the spatial and temporal order. Because trp is present in virtually every cell in the body, these fluorescent and phosphorescent fingerprints can be used to detect cancer in many different organs. Using phosphorescence, it is possible to create predictive models for GBM in both primary and secondary diagnostics. This will assist clinicians in selecting the appropriate treatment option, monitoring treatment, and adapting to the era of patient-centered precision medicine.
Asunto(s)
Glioblastoma , Humanos , Pronóstico , Glioblastoma/diagnóstico por imagen , Estudios Retrospectivos , Encéfalo , Oncología Médica , Carcinogénesis , Mediciones LuminiscentesRESUMEN
BACKGROUND: Assessment of 'physiological stress levels' and 'nutritional status' before surgery is important for predicting complications and indirect interventions on the pancreas. The aim of this study was to determine neutrophil-lymphocyte ratio (NLR) and nutritional risk index (NRI) indicators before surgery to predict 90-day complications and mortality in a cohort of patients with complicated chronic pancreatitis and cancer of the head of the pancreas. METHODS: We evaluated preoperative levels of NLR and NRI among 225 subjects treated at different centres located in three countries. Short-term outcomes included length of hospital stay, postoperative complications, and mortality at 90 days and were appreciated based on NLR and NRI. The level of physiological stress was divided according by the formulas: neutrophil-lymphocyte ratio (NLR) = (neutrophil count, %)/(lymphocyte count, %). The nutritional state of the patients was divided according to the INR: NRI = (1.519 × serum albumin, g/L) + (41.7 × present weight, kg / usual weight, kg)]. RESULTS: All patients were operated. An analysis of the operations performed in three institutions demonstrated mortality in chronic pancreatitis and pancreatic pseudocysts in 1.4%, in chronic pancreatitis and the presence of an inflammatory mass mainly in the pancreatic head in 1.2%, and in cancer of the pancreatic head in 5.9%. The mean preoperative NLR was normal in 33.8% of the patients, the mild physiologic stress level was 54.7%, and the moderate was 11.5% before surgery. 10.2% of patients had a normal nutritional status, 20% had mild, 19.6% had moderate, and 50.2% had severe malnutrition. In a univariate analysis, at the cutoff of NLR ≥ 9.5 (AUC = 0.803) and the cutoff of NRI ≤ 98.5 (AUC = 0.801), increasing the risk of complications was observed (hazard ratio, 2.01; 95% CI, 1.247-3.250, p = 0.006), but at the cutoff of NRI ≤ 83.55 (AUC = 0.81), we observed a survival difference in operated patients (hazard ratio, 2.15; 95% CI, 1.334-3.477, p = 0.0025). CONCLUSIONS: Our study demonstrated that NLR and NRI were predictors of postoperative complications, but only NRI was a predictor of 90-day mortality in patients after surgery.
Asunto(s)
Desnutrición , Pancreatitis Crónica , Humanos , Estudios Retrospectivos , Factores de Riesgo , Desnutrición/complicaciones , Desnutrición/diagnóstico , Linfocitos , Complicaciones Posoperatorias/epidemiología , Neutrófilos , Pancreatitis Crónica/complicaciones , Pancreatitis Crónica/cirugía , PronósticoRESUMEN
The immune system influences the fate of developing cancers by not only functioning as a tumour promoter that facilitates cellular transformation, promotes tumour growth and sculpts tumour cell immunogenicity, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion. Yet, clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer-induced immunosuppression. In many individuals, immunosuppression is mediated by cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), two immunomodulatory receptors expressed on T cells. Monoclonal-antibody-based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits-including durable responses--to patients with different malignancies. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Here we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T-cell rejection antigens following anti-PD-1 and/or anti-CTLA-4 therapy of mice bearing progressively growing sarcomas, and we show that therapeutic synthetic long-peptide vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Although mutant tumour-antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with anti-PD-1 and/or anti-CTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles, rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens are not only important targets of checkpoint blockade therapy, but they can also be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/uso terapéutico , Puntos de Control del Ciclo Celular/inmunología , Inmunoterapia , Sarcoma/terapia , Animales , Epítopos/genética , Masculino , Ratones , Sarcoma/inmunología , Vacunas Sintéticas/uso terapéuticoAsunto(s)
Asma , Eosinófilos , Proteínas Sanguíneas , Estudios de Casos y Controles , Preescolar , Humanos , Recuento de LeucocitosRESUMEN
The fluorescence quantum yield of the 5,10,15,20-tetraphenylporphyrin, 5,10,15,20-tetra(4-OH-phenyl)porphyrin, 5,10,15,20-tetra(4-Cl-phenyl)porphyrin, 5,10,15,20-tetra(4-NH2-phenyl)porphyrin and their complexes with Zn2+ have been determined and the kinetic rate constants of the porphyrins ligands complexation with Zn2+ in acetonitrile have been estimated. It was shown that the substituents on the tetrapyrrolic macrocycle periphery have a strong influence on the fluorescent and coordination properties of the investigated porphyrins.
RESUMEN
This study aimed to investigate the effectiveness of combined negative pressure wound therapy (NPWT) and human amniotic membrane in patients with chronic wounds associated with diabetes. A total of five patients with type 2 diabetes, including ischemic and mixed forms of diabetic foot syndrome, presenting with ischemic wounds of the lower extremities were included in this study. Patients with uncorrected limb ischemia were excluded. The treatment protocol included diabetes compensation (treatment with fractional insulin therapy), anticoagulant, metabolic therapy and angiotropic therapy, physical treatment methods, osteoporosis therapy with calcium preparations, and wound-specific interventions. The primary treatment approach involved the application of a vacuum bandage to the transplanted human amniotic membrane, which improved the adaptation of the flap to the wound surface, allowed the removal of excess wound exudate, and stimulated angiogenesis and reparative properties. The combined approach of NPWT and biotherapy was a safe and effective cure for diabetic wounds, promoting faster wound healing, reducing the need for autodermoplasty, and possibly reducing the necessity for high-level amputations.
Asunto(s)
Diabetes Mellitus Tipo 2 , Pie Diabético , Terapia de Presión Negativa para Heridas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Pie Diabético/cirugía , Cicatrización de Heridas , Amputación Quirúrgica , Tratamiento Basado en Trasplante de Células y Tejidos , Terapia de Presión Negativa para Heridas/métodosRESUMEN
The feasibility of risk assessment of a Siberian silk moth (Dendrolimus sibiricus Tschetv.) outbreak was analyzed by means of landscape and weather characteristics and tree condition parameters. Difficulties in detecting forest pest outbreaks (especially in Siberian conditions) are associated with the inability to conduct regular ground surveillance in taiga territories, which generally occupy more than 2 million km2. Our analysis of characteristics of Siberian silk moth outbreak zones under mountainous taiga conditions showed that it is possible to distinguish an altitudinal belt between 400 and 800 m above sea level where an outbreak develops and trees are damaged. It was found that to assess the resistance of forest stands to pest attacks, researchers can employ new parameters: namely, characteristics of a response of remote sensing variables to changes in land surface temperature. Using these parameters, it is possible to identify in advance (2-3 years before an outbreak) forest stands that are not resistant to the pest. Thus, field studies in difficult-to-access taiga forests are not needed to determine these parameters, and hence the task of monitoring outbreaks of forest insects is simplified substantially.
RESUMEN
Several recommendations and data on the treatment of acute necrotizing pancreatitis (ANP) are conflicting and different surgical approaches continue to exist. We conducted a study on 148 patients with ANP, who were divided into two groups: the main group (n = 95) when the tactics of the step-up approach were applied with the principles of the concept of Enhanced Recovery After Surgery (ERAS) in order to determine this approach on effectiveness in reducing complications and 30-day mortality (2017-2022); the comparison group (n = 53) when the same tactic of the treatment was used without ERAS principles (2015-2016). Treatment time for the main group in the intensive care unit was minimized (p ≤ 0.004); it has been shown to reduce the frequency of complications in these patients (p < 0.001) requiring conservative or surgical treatment without general anaesthesia (Clavien-Dindo I-IIIa); no statistically significant differences were observed for the total incidence of Clavien-Dindo IIIb-IVb complications (p > 0.05); the median duration of treatment for patients in the primary group was 23 days, and in the reference group-34 days (p ≤ 0.003). Pancreatic infections have been observed in 92 (62.2%) patients and gram-negative bacteria predominated in the overall pathogen structure with 222 (70.7%) strains. The only evidence of multiple organ failure before (AUC = 0.814) and after surgery (AUC = 0.931) was found to be predictive of mortality. Antibiotic sensitivity of all isolated bacteria better understood local epidemiology and identified the most effective antibiotics when treating patients.
RESUMEN
This study aimed to compare the differentiation and survival of human neural stem/progenitor cells of various origins in vitro and after transplantation into the injured spinal cord of laboratory animals. Rats with simulated spinal cord injury were transplanted with neurosphere cells obtained by directed differentiation of HUES6 cell lines. Fluorescence microscopy was used to visualize the obtained results. HUES6#1 and iPSC#1 neurospheres showed a wide range of markers associated with glial differentiation. The expression of the proliferation marker Ki67 did not exceed 25%, both in the lines of early and late neurospheres. Although neurospheres did not fully differentiate into astrocytes in vitro, they massively approached the GFAP+ astrocyte phenotype when exposed to the transplanted environment. PSC-derived neurospheres transplanted into the site of SM injury without additional growth factors showed only moderate survival, a significant degree of differentiation into astrocytes, and moderate differentiation into neurons. The difference in the survival and differentiation of HUES6#1 and iPSC#1 neurospheres, both in vitro and in vivo, can be explained by the difference in the regulatory behavior of signaling molecules corresponding to the source of origin of PSCs. Derivatives of human PSCs of various origins obtained according to the described differentiation protocol did not mature into astrocytic populations, nor did the glycogenic transition of PSC-derived NSCs occur in vitro. The study demonstrated the impact of the injured spinal cord microenvironment on the differentiation of transplanted HUES6#1 and iPSC#1 into astrocytes. The results showed that HUES6-derived neurospheres generated 90% of GFAP+ astrocytes and 5-10% of early neurons, while iPSC-derived neurospheres generated an average of 74% GFAP+ astrocytes and 5% of early neurons in vivo.
Asunto(s)
Neuronas , Traumatismos de la Médula Espinal , Ratas , Humanos , Animales , Células Cultivadas , Diferenciación Celular/fisiología , Traumatismos de la Médula Espinal/cirugíaRESUMEN
Protonation of a free-base meso-pyrimidinyl-substituted AB(2)-corrole (H(3)AB(2)) in ethanol solution by stepwise addition of sulfuric acid has been studied in the temperature range from 293 to 333 K. The formation rate of protonated species was found to depend profoundly on the temperature at which the titration was undertaken. Two steps in the titration curve were identified at temperatures around 293-298 K, whereas one-step formation of protonated species was found to occur at temperatures above 308 K. The protonation product was the same in both cases, i.e., H(4)AB(2)(+) corrole, protonated at the macrocycle core nitrogen atoms. The two steps in the protonation kinetics at lower temperatures were attributed to protonation of individual tautomers of the free-base H(3)AB(2) corrole. To the best of our knowledge, this is the first well-illustrated (spectrophotometric) observation of individual properties of corrole NH tautomers in fluid solution. Concomitant increase in the NH tautomerization rate with increasing temperature is proposed to account for the one-step protonation. Evidences for the role of individual corrole NH tautomers in the protonation process as well as their optical features are discussed based on spectroscopic results and simulation data.
Asunto(s)
Porfirinas/química , Protones , Etanol/química , Estructura Molecular , Soluciones , Espectrofotometría Ultravioleta , Ácidos Sulfúricos/química , TemperaturaRESUMEN
Composite materials have been used based on coordination polymers or microporous metal-organic frameworks (MOFs) combined with mesoporous matrices for adsorption-related techniques, which enable outflanking some adverse phenomena manifested during pristine components operation and enhance the performance and selectivity of the resulting materials. In this work, for the first time, the novel HKUST-1@BPS composites synthesized by the microwave-assisted (MW) technique starting from microporous HKUST-1 (Cu3(btc)2) MOF and biporous silica matrix (BPS) with bimodal mesopore size distribution were comparatively studied as materials for liquid-phase adsorption techniques utilizing the high-performance liquid chromatography (HPLC) method and benzene as a model adsorbate. It was established that the studied HKUST-1@BPS composites can function as stationary phases for HPLC, unlike the pristine HKUST-1 and bare BPS materials, due to the synergetic effect of both components based on the preliminary enhanced adsorbate mass transfer throughout the silica mesopores and, subsequently, its penetrating into HKUST-1 micropores. The suggested mechanism involves the initial deactivation of open metal Cu2+ sites in the HKUST-1 framework structure by isopropanol molecules upon adding this polar component into the mobile phase in the region of the isopropanol concentration of 0.0 to 0.2 vol.%. Thereafter, at the medium range of varying the isopropanol concentration in the eluent of 0.2 to 0.3 vol.%, there is an expansion of the previously inaccessible adsorption centers in the HKUST-1@BPS composites. Subsequently, while further increasing the isopropanol volume fraction in the eluent in the region of 0.3 to 5.0 vol.%, the observed behavior of the studied chromatographic systems is similar to the quasi-normal-phase HPLC pattern. According to the obtained thermodynamic data, benzene adsorption into HKUST-1 micropores from solutions with a vol.% of isopropanol in the range of 0.4 to 5.0 follows the unique entropy-driven mechanism previously described for the MIL-53(Al) framework. It was found that HKUST-1 loading in the composites and their preparation conditions have pronounced effects on their physicochemical properties and adsorption performance, including the adsorption mechanism.
RESUMEN
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat-rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = -0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
RESUMEN
The capacity of human norovirus (NoV), which causes >90% of global epidemic nonbacterial gastroenteritis, to infect a subset of people persistently may contribute to its spread. How such enteric viruses establish persistent infections is not well understood. We found that antibiotics prevented persistent murine norovirus (MNoV) infection, an effect that was reversed by replenishment of the bacterial microbiota. Antibiotics did not prevent tissue infection or affect systemic viral replication but acted specifically in the intestine. The receptor for the antiviral cytokine interferon-λ, Ifnlr1, as well as the transcription factors Stat1 and Irf3, were required for antibiotics to prevent viral persistence. Thus, the bacterial microbiome fosters enteric viral persistence in a manner counteracted by specific components of the innate immune system.
Asunto(s)
Infecciones por Caliciviridae/virología , Citocinas/fisiología , Gastroenteritis/virología , Intestinos/microbiología , Microbiota , Norovirus/fisiología , Simbiosis , Animales , Antibacterianos/farmacología , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/microbiología , Femenino , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/inmunología , Gastroenteritis/microbiología , Intestinos/virología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/efectos de los fármacos , Norovirus/inmunología , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transducción de Señal , Carga Viral , Replicación Viral , Esparcimiento de VirusRESUMEN
Syntheses of specified 2'-modified nucleosides were achieved: a) via oximation of the 5',3'-blocked 2'-oxocytidine, followed by reduction, or b) by intramolecular nucleophilic addition of 3'-(2-methoxyethoxy)carbamate to the 2'-position with opening of O(2),2'-anhydrouridine. For the first time, 3'-phosphoroamidites of these 2'-modified nucleosides were successfully incorporated into oligonucleotides by solid-phase synthesis. Incorporation of 2'-modified nucleotides into oligodeoxyribonucleotides had a negative effect on the duplex T(m) values with the DNA or RNA complements. Nevertheless, modified nucleotides have shown good target recognition; the (S)-isomer binds preferably to RNA and the (R)-isomer to DNA. Both modified nucleosides significantly increased nuclease resistance of the oligodeoxyribonucleotides.